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ABSTRACT

Smart contracts are computer programs allowing users to define

and execute transactions automatically on top of the blockchain

platform. Many of such smart contracts can be viewed as games. A

game-like contract accepts inputs from multiple participants, and

upon ending, automatically derives an outcome while distributing

assets according to some predefined rules. Without clear under-

standing of the game rules, participants may suffer from fraudulent

advertisements and financial losses. In this paper, we present a

framework to perform (semi-)automated verification of smart con-

tract fairness, whose results can be used to refute false claims with

concrete examples or certify contract implementations with respect

to desired fairness properties. We implement FairCon, which is

able to check fairness properties including truthfulness, efficiency,

optimality, and collusion-freeness for Ethereum smart contracts.

We evaluate FairCon on a set of real-world benchmarks and the

experiment result indicates that FairCon is effective in detecting

property violations and able to prove fairness for common types of

contracts.

CCS CONCEPTS

· Software and its engineering→ Software verification; Soft-

ware verification and validation.
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1 INTRODUCTION

The blockchain technology has been developed rapidly in recent

years, since the introduction of Bitcoin [42] by Nakamoto in 2008.

The distributed and tamper-resistant nature of blockchain has made

it the perfect platform for hosting smart contracts. Smart con-

tracts are computer programs running atop blockchain platforms

to manage large sums of money, carry out transactions of assets,

and govern the transfer of digital rights between multiple parties.

Ethereum [60] and EOS [28] are among themost popular blockchain

platforms which support smart contracts and have them applied in

many areas. As of February 2020, there are over one million smart

contracts deployed on Ethereum, which is a 100 fold increase since

just two years ago. These smart contracts have enabled about 2.7K

decentralized applications (DApps) [3] serving 20K daily users on

finance, health, governance, gambling, games, etc.

The security of smart contracts has been at the center of at-

tention, ever since their adoption in the management of massive

monetary transactions. One of the most notorious cases is the

DAO attack [49] on Ethereum, which resulted in a loss of $60 mil-

lion worth, due to the reentrancy vulnerability being exploited by

malicious attackers. Several gambling games on EOS, including

EOS.WIN and EOSPlay, were recently hacked using a technique

called the transaction congestion attack [47] and led to significant

asset loss. What these incidents share in common is that certain

security vulnerabilities neglected during contract development are

exploited by malicious parties, causing a loss for the contract own-

ers (and possibly other honest participants). These vulnerabilities

are programming errors, indicating a mismatch between the con-

tract developers’ expectations and how the contract code actually

works. They are easy to detect once the vulnerability patterns are

recognized. In fact, much research has been dedicated to preventing,

discovering, and mitigating such attacks.

In contrast, the fairness issues of smart contracts have not yet

attractedmuch attention. A smart contract is unfair to certain partic-

ipants if there is a mismatch between the participants’ expectations

and the actual implementation of the game rules. It is possible that

a malicious party may gain an advantage over others through the

exploitation of security vulnerabilities, e.g., examining other partici-

pants’ actions in a sealed game. In this paper, we would like to focus

more on the fairness issues introduced by the logical design of the

contracts instead, which are orthogonal to the security issues. For

example, smart contracts may well be advertised as łsocial gamesž

with a promised 20% return for any investment, but turn out to be

łPonzi schemesž [11]. In this case, the possibility that the game may
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eventually slow down and never pay back is intentionally left out.

Similarly, many auction DApps claim to be safe and fair, yet it is

still possible for bidders to collude among themselves or with the

auctioneer to make a profit at the expenses of the others [61]. The

fairness issues mostly reside in contract logic: some of them are

unfair by design, while the rest are careless mistakes. This makes

the detection of such issues particularly challenging, because every

case can be different and there is no hope in identifying predefined

patterns. Since it is often not the contract creators’ interest at risk

(or even worse when they gain at the expenses of participants),

there is little incentive for them to allocate resources in ensuring

the fairness of their contracts. On the other hand, it is rather diffi-

cult, for inexperienced users, to tell whether a contract works as

advertised, even with the source code available.

In this paper, we present FairCon, a framework for verifying fair-

ness properties of smart contracts. Since general fairness is largely

a subjective concept determined by personal preferences, there is

no universal truth when considering only a single participant. We

view a smart contract as a game (or mechanism [29, 45]), which

accepts inputs from multiple participants, and after a period of

time decides the outcome according to some predefined rules. Upon

game ending, each participant receives certain utility depending

on the game outcome. With such a mechanism model, we can then

verify a wide range of well-studied fairness properties, including

truthfulness, efficiency, optimality, and collusion-freeness. It is also

possible to define customized properties based on specific needs.

The real challenge in building the fairness verification framework

is on how to translate arbitrary smart contract code into standard

mechanism models. Our solution to this is to have an intermediate

representation for each type of games, which has direct semantic

translation to the underlying mechanism model. For instance, the

key components in an auction are defined by the set of bidders, their

bids, and the allocation and clear price rules of the goods in sale.

To synthesize the intermediate mechanism model for an auction

smart contract, we first manually instrument the contract code with

customized labels highlighting the relevant components. Then we

perform automated symbolic execution [35] on the instrumented

contract to obtain symbolic representations for auction outcomes

in terms of the actions from a bounded number of bidders. This

is finally mapped to standard mechanism models where fairness

properties can be checked. We either find property violations with

concrete counterexamples or are able to show satisfaction within

the boundedmodel. For properties of whichwe do not find violation,

we attempt to prove them for unbounded number of participants

on the original contract code, with program invariants observed

from the bounded cases.

By introducing the intermediate representations, we could keep

the underlying mechanismmodel and property checking engine sta-

ble. We defined an intermediate language for two types of game-like

contracts popular on Ethereum, i.e., auction and voting. We imple-

mented FairCon to work on Ethereum smart contracts and applied

it on 17 real auction and voting contracts from Etherscan [5]. The

effort of manual labeling is reasonably low, considering the struc-

tural similarity of such contracts. The experimental results show

that there are many smart contracts violating fairness property and

FairCon is effective to verify fairness property and meanwhile

achieves relatively high efficiency.

Contributions. Our main contributions are summarized as fol-

lows.

• We proposed a general fairness verification framework, FairCon,

to check fairness properties of smart contracts. In particular, we

demonstrated FairCon on two types of contracts and four types

of fairness properties.

• We defined intermediate representations for auction and voting

contracts, and designed a (semi-)automated approach to translate

contract source code intomathematical mechanismmodels which

enable fairness property checking.

• In addition to discovering property violations for bounded mod-

els, we apply formal verification to prove satisfaction of proper-

ties for the unbounded cases as well.

• We implemented FairCon and evaluated it on 17 real-world

Ethereum smart contracts. The results show that FairCon is

able to effectively detect fairness violations and prove fairness

properties for common types of game-like contracts. The dataset,

raw results, and prototype used are available online: https://doi.

org/10.21979/N9/0BEVRT.

Organizations. The rest of the paper is organized as follows. Sec-

tion 2 illustrates the workflow of FairCon with an example. Sec-

tion 3 presents a general mechanism analysis model and defines a

modeling language customized for auction and voting contracts,

serving as an intermediate representation between the contract

source code and the underlying mechanism model. We then de-

scribe the model construction and fairness checking as well as

verification techniques in Sect. 4. Section 5 gives details on the im-

plementation and presents the evaluation results. Sections 6 and 7

compare FairCon with the related work and conclude the paper,

respectively.

2 FAIRCON BY EXAMPLE

In this section, we use an auction contract to illustrate how our

approach works in constructing the intermediate mechanismmodel

and verifying fairness properties.

Example 2.1. Figure 1 shows a simplified Ethereum smart con-

tract, named CryptoRomeAuction, written in Solidity [53], taken

from Etherscan.1 The contract implements a variant of open Eng-

lish auction for a blockchain-based strategy game, where players

are allowed to buy virtual lands with cryptocurrencies. The auction

is given a predefined life cycle parameterized by start and end times.

A participant can place a bid by sending a message to this contract

indicating the value of the bid. The address of the participant and

the bid amount are stored in variables msg.sender and msg.value,

respectively. The address of the current highest bidder is recorded

in highestBidder (Line 9), and a mapping refunds is used to keep

the contributions of each participant (Line 10) for possible refunding

later. The bid() function (Lines 11ś21) is triggered upon receiving

the message. The bid is rejected if the bid amount is no more than

the sum of the current highest bid and the minimal increment value

duration (Lines 13ś15). Otherwise, the previous highestBidder

gets a refund (Lines 16ś18), and the highestBidder (Line 19) and

highestBid (Line 20) are updated accordingly.

1https://etherscan.io/address/0x760898e1e75dd7752db30bafa92d5f7d9e329a81
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1 contract CryptoRomeAuction {

2 /** FairCon Annocations

3 @individual(msg.sender, msg.value, VALUE)

4 @allocate(highestBidder)

5 @price(highestBid)

6 @outcome(bid())

7 */

8 uint256 public highestBid = 0;

9 address payable public highestBidder;

10 mapping(address=>uint) refunds;

11 function bid() public payable{

12 uint duration = 1;

13 if (msg.value < (highestBid + duration)){

14 revert();

15 }

16 if (highestBid != 0) {

17 refunds[highestBidder] += highestBid;

18 }

19 highestBidder = msg.sender;

20 highestBid = msg.value;

21 }

22 }

Figure 1: The CryptoRomeAuction Solidity source code.

Table 1: Example instances of CryptoRomeAuction.

Truthful Untruthful Collusion

Bidder p1 p2 p3 p1 p2 p3 p1 p2 p3

Valuation 3 4 6 3 4 6 3 4 6

Bid 3 4 6 3 4 5 3 0 4

Allocation ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✓

Price 0 0 6 0 0 5 0 0 4

Utility 0 0 0 0 0 1 0 1 1

Threats toContract Fairness.Oneway that CryptoRomeAuction

can become unfair to the participants is through the so called shill

bidding [30]Ða shill tries to escalate the price without any intention

of buying the item. This can be induced by either the auctioneer or

adversarial participants, and other bidders may need to pay more as

a result. Occasionally, the shill wins the auction if no other higher

bid comes before auction ends. The item may then be sold again at

a later time.

Apart from shill bidding, there are a number of other well-studied

properties from the game theory and mechanism design literature,

which can be used to evaluate the fairness of an auction. We use

the example instances shown in Table 1 to demonstrate. Suppose

there are three bidders, p1, p2, and p3, participating in the auc-

tion. Each of them has a valuation of the item, i.e., the item worth

three, four, and six units of utility for p1, p2, and p3, respectively.

The Columns łTruthfulž, łUntruthfulž, and łCollusionž in Table 1

show the three example scenarios, where the players act truth-

fully, untruthfully, and collude among themselves. The Rows łBidž,

łAllocationž, łPricež, and łUtilityž show the bids placed, the final

allocation of the item, the clear price, and the utilities obtained by

the bidders, respectively.

Same as other first-price auction schemes, CryptoRomeAuction

is not truthful, i.e., bidding truthfully according to one’s own valu-

ation of the item is not a dominant strategy. In the ideal truthful

scenario, all bidders bid according to their valuations, and p3 wins

the bid with a utility of zero, because the payment equals to his/her

CryptoRomeAuction := (msдsender1,msдvalue1, _)

(msдsender2,msдvalue2, _)

(msдsender3,msдvalue3, _)

assume : (not (msдvalue2 < msдvalue1 + 1)) and

(not (msдvalue3 < msдvalue2 + 1))

allocate : argmax(msдvalue1,msдvalue2,msдvalue3)

price : max(msдvalue1,msдvalue2,msдvalue3)

Figure 2: The mechanism model of CryptoRomeAuction

with three bidders.

valuation of the item. In another scenario, where p3 bids five (un-

truthfully), his/her utility would increase by one because of the

lower clear price. This is called bid shading, which only affects the

revenue from the auction in this example, but may affect other

participants’ utilities in some other cases.

In the third scenario, p2 and p3 collude in order to gain extra

profits. With full knowledge of each other’s valuations, p2 and p3
may decide to form a cartel and perform bid shading. One possibility

is to have p2 forfeit his/her chance and p3 bids four, and they divide

the profit equally among themselves. Each of them gains one unit

of utility as a result.

Checking Fairness Properties. Given a mechanism model ab-

stracting the auction settings, the set of fairness properties are

well-defined and can be formally specified based on the model. The

main challenge remains on how to extract the underlying mecha-

nism model from the smart contract source code. Now we illustrate

how this is done for CryptoRomeAuction in FairCon and outline

the process of automated property checking as well as verification.

Albeit variations in implementations, all auction contracts share

some common components, such as the bidders’ identifiers, their

bids, and the allocation as well as clear price rules. We rely on

users to provide annotations for these components directly on the

source code, which are demonstrated on Lines 2ś7 in Fig. 1. Specif-

ically, the annotations specify the bidders’ information as a tuple,

ł@individual(msg.sender,msg.value)ž, indicating the variables

used to store the identifier and the bid value, respectively. Similarly,

ł@allocation(highestBidder)ž and ł@price(highestBid)ž in-

dicate that the allocation result and the clear price are stored in

highestBidder and highestBid, respectively. Finally, ł@outcomež

is used to label the function defining the auction allocation logic.

With these labels, we perform symbolic execution [35] on the

bid() function treating the participants’ inputsÐmsg.valueÐas

symbolic variables. The result of this would be two symbolic expres-

sions for both highestBidder and highestBid, which symboli-

cally represent the allocation and clear price functions, respectively.

We can then use these information to synthesize an intermediate

mechanism model, shown in Fig. 2. The model is specified in a cus-

tomized language designed for auction and voting contracts. Details

of the language syntax and semantics can be found in Sect. 3. At the

high level, the model specifies information of the participating in-

dividuals and the auction rules: we consider a bounded model with

only three bidders (i.e.,msдsender1,msдsender2, andmsдsender3),

their bids have to satisfy the constraint specified in the assume

clause, the allocation function is given as łargmax(msдvalue1,
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msдvalue2,msдvalue3)ž, and the clear price function is given as

łmax(msдvalue1,msдvalue2,msдvalue3)ž.

The intermediate mechanism model in Fig. 2 has well-defined

mathematical semantics, which can be used to check the desired

fairness properties. We encode both the model and the property

with an SMT formula such that a counterexample exists if and only

if the formula is satisfiable. More details on the encoding can be

found in Sect. 4.2. If the formula is unsatisfiable, we are confident

that the property holds for the bounded case with three bidders.

We then attempt to prove the property by instrumenting the con-

tract program with program invariants encoding the allocation and

clear price clauses synthesized previously, but parameterized by

an unbounded number of bidders. The instrumented program and

the property are then passed to a program verification tool, such as

Dafny [38], to perform the automated verification.

3 THE ANALYSIS FRAMEWORK FOR SMART

CONTRACT FAIRNESS

In this section, we first provide necessary background and defini-

tions on mechanism models and fairness properties well studied

in the mechanism design literature [29, 45]. Then we give the ab-

stract syntax and semantics of our mechanism modeling language

to support automated model construction and property checking.

3.1 Smart Contracts as Mechanism Models

Mechanism design is used to design economic mechanisms or incen-

tives to help attain the goals of different stakeholders who partici-

pate in the designated activity. The goals are mainly related to the

outcome that could be described by participants’ payoff and their

return in the activity. We model the logic behind smart contracts

with a mathematical object known as the mechanism.

In a mechanism model, we have a finite number of individuals,

denoted by N = {1, 2, . . . ,n}. Each individual i holds a piece of

private information represented by a type, denoted θi ∈ Θi . Let the

types of all individuals be θ = (θ1, . . . ,θn ), and the space be Θ =

×iΘi . The individuals report, possibly dishonestly, a type (strategy)

profile θ̂ ∈ Θ. Based on everyone’s report, the mechanism model

decides an outcome which is specified by an allocation function

d : Θ 7→ O , and a transfer function t : Θ 7→ Rn , where O = {oi ∈

{0, 1}n | Σioi = 1} is the set of possible outcomes.

The preferences of an individual over the outcomes are repre-

sented using a valuation function vi : O × Θi 7→ R. Thus, vi (o,θi )

denotes the benefit that individual i of type θi receives from an

outcome o ∈ O , and vi (o,θi ) > vi (o
′
,θi ) indicates that individual

i prefers o to o′. The individual i’s utility under strategy profile

θ̂ is calculated by subtracting the payment to be made from the

valuation of a certain outcome: ui (θ̂ ) = vi (θ̂ ,θi ) − ti (θ̂ ).

3.2 Fairness Properties

The fairness of smart contracts is usually subject to the understand-

ings and preferences of the participating partiesÐa contract fair to

someone may be unfair to the others. In particular, fairness can be

considered from both the participants’ and the contract creators’

points of view. To capture such nuances, individual parties have to

be modeled separately before such subjective fairness properties

can be specified against the model.

Generally speaking, all properties which can be expressed in

terms of the mechanism model defined in Sect. 3.1 are supported

by our reasoning framework. To keep the presentation simple, in

this paper, we focus on analyzing a set of generic fairness prop-

erties based on the mechanism models. We restrict the discussion

to four types of well-studied properties in the literature, namely,

truthfulness, optimality, efficiency, and collusion-freeness.

To formally define the properties, we first introduce an important

conceptÐdominant strategy. We use θ̂−i to denote the strategy

profile of the individuals other than i , i.e., (θ̂1, . . . , θ̂i−1, θ̂i+1, . . . ,

θ̂n ). Therefore, (θ̂
′
i , θ̂−i ) is used to denote the strategy profile which

differs from θ̂ only on θ̂i .

Definition 3.1 (Dominant Strategy). A strategy θ̂i ∈ Θi is a domi-

nant strategy for i , if ∀θ̂−i∀θ̂
′
i ∈ Θi ·ui (θ̂i , θ̂−i ) ≥ ui (θ̂

′
i , θ̂−i ). When

equality holds, the strategy is a weak dominant strategy.

We say that a mechanism model is truthful if and only if for

any individual and strategy profile, reporting one’s real type (truth-

telling, i.e., ∀i ∈ N · θ̂i = θi ) is a dominant strategy.

Definition 3.2 (Truthfulness). Formally, a mechanism is truthful

if and only if, ∀θ−i∀θ̂i ∈ Θi · ui (θi ,θ−i ) ≥ ui (θ̂i ,θ−i ).

Given an auction smart contract with many bidders competing

for a single indivisible good, the account which creates the contract

is the auctioneer and the accounts which join the auction are the

bidders. If the auction prevents bidders from benefiting more by

bidding less, it is truthful. When bidding untruthfully is not a good

strategy, the auction can generally attract more honest bidders and

the auctioneer can get higher revenue for the good on sale.

Definition 3.3 (Efficiency). We say a mechanism is efficient if and

only if its allocation function achieves maximum total value, i.e.,

∀θ̂ ∈ Θ∀d ′ ·
∑
i vi (d(θ̂ ),θi ) ≥

∑
i vi (d

′(θ̂ ), θi ).

Suppose no bidder can affect any other bidder’s valuation. If the

only winner is the bidder who values the good the most, the auction

is efficient.

Definition 3.4 (Optimality). We say a mechanism is optimal if

and only if its transfer function achieves maximum total net profit,

i.e., ∀θ̂ ∈ Θ∀t ′ ·
∑
i ti (θ̂ ) ≥

∑
i t
′
i (θ̂ ).

Similarly, if the winner is the one who bids the highest, the

auction is optimal. In this case, the auctioneer receives the highest

revenue.

We use θ̂−i j to denote the strategy profile of individuals other

than i and j, i.e., {θ̂1, . . . , θ̂i−1, θ̂i+1, . . . , θ̂ j−1, θ̂ j+1, . . . , θ̂n }.

Definition 3.5 (2-Collusion Free). We say amechanism is 2-collusion

free if there does not exist a cartel of individuals i and j, whose

untruthful strategies increase the group utility, formally, ui (θ̂i , θ̂ j ,

θ−i j ) + uj (θ̂i , θ̂ j ,θ−i j ) ≥ ui (θi ,θ j ,θ−i j ) + uj (θi ,θ j ,θ−i j ).

Collusion is a big concern in auction and other multi-player

games. The basic 2-collusion freeness property in an auction means

that any two bidders’ collusion cannot help them achieve higher

gain. This prevents bid price manipulation to a certain extent, which

helps guarantee fair chance for all bidders and maintain good rev-

enue for the auctioneer. A more general version, i.e., n-collusion

freeness, can be defined in a similar way.
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<individual> := (id : S, bid : N, val : N)

<func> := max | argmax

<exp> := <individual>.id | <individual>.bid

| N | <exp> [+-] <exp> | <func>(<exp>*)

<bool> := <exp> == <exp> | <exp> < <exp>

| not <bool> | <bool> and <bool>

<assumption> := assume : <bool>

<outcome> := allocate : <exp>

| price : <exp>; allocate : <exp>

<property> := <bool> | forall : <bool>

<mechanism> := <individual>*; <assumption>; <outcome>;

<property>

Figure 3: Syntax of the auction/voting mechanism model.

(id1,bid1,val1), . . . , (idn ,bidn ,valn )
[Indiv]

N ← {1, . . . ,n} θ̂ ← {bid1, . . . ,bidn }

{vi (oi ,θi )} ← {vali }

assume : assumption allocate : allocation
[Alloc]

d(θ̂ ) ← eval(assumption ∧ allocation)

assume : assumption price : clearprice
[Price]

t(θ̂ ) ← eval(assumption ∧ clearprice)

Figure 4: Semantic rules of the auction/voting model.

3.3 Mechanism Modeling Language

We now propose a domain-specific language to facilitate the auto-

mated translation from smart contracts to mechanism models.

We define an abstract syntax of the mechanism modeling lan-

guage, which is applicable to both auction and voting. Figure 3

shows the context-free grammar of the language. A mechanism

model comprises one or more individuals, an assumption, an out-

come, and a property to be verified. An individual is defined as a

triple containing the identifier łidž, bid amount łbidž, and valuation

łvalž. An assumption is a Boolean constraint which should be satis-

fied upon the entry of the contract. The outcome of the contract is

specified by the allocation and the clear price functions, which are

expressions over id and bid . Voting contract typically does not have

a clear price function. We allow properties to be specified using a

Boolean expression optionally preceded by a łforallž quantifier.

Language Semantics. The semantic mapping from the modeling

language to the underlying mechanism model is summarized in

Fig. 4. The łIndivž rule maps the individuals and their reported

types as well as valuations. More specifically, the individuals’ bids

are mapped to their reported types θ̂ , and an individual of type

θi ’s valuation of the item vi (oi ,θi ) is vali , where oi denoted the

outcome where the item is allocated to i . The łAllocž rule conjuncts

the Boolean expression assumption from the łassumež clause and

the symbolic expression allocation in terms of individuals’ strate-

gies from the łallocatež clause, which is evaluated as the allocation

function. Similarly, the transfer function is the conjunction of the

assumption and the clearprice expressions. There are some differ-

ences between auction and voting: clear price is absent from voting,

where allocation is done by comparing the number of ballots (bids)

by the participating individuals; whereas in auction, the individuals

who bid no less than the clear price can be allocated the item.

This language works for the most commonly seen auction and

voting contracts with fairness concerns. For example, Ethereum

smart contracts meeting the ERC-1202 (voting) [4] and ERC-1815

(blind auctions, under review) [6] standards all follow the same

interface and structure, therefore can be automatically translated

into our modeling language. Similar languages can also be designed

for other types of contracts (e.g., social games). The proposed mod-

eling language can be modified and extended to establish suitable

mappings from new contract types to the classic mechanism model.

With the new modeling language, the model extraction and prop-

erty checking algorithms can be directly reused.

4 THE FAIRCON FRAMEWORK

In this section, we present the FairCon verification framework for

smart contract fairness. Figure 5 shows the overall workflow of

FairCon. The framework consists of three modules, namely, model

extraction, property checking, and fairness verification.

The smart contract source code is first automatically instru-

mented according to user-provided annotations. At this stage, we

consider a k-player bounded model, and the instrumented contract

code contains a harness which orchestrates the interactions be-

tween the players and the target contract. The extraction of the

mechanism model is powered by symbolic execution of the harness

program, and an intermediate mechanism model is synthesized as

a result.

In order to perform property checking, the intermediate mech-

anism model, along with the desired property, are encoded as an

SMT formula, such that the formula is unsatisfiable if and only if

the property holds with respect to the model. We use an SMT solver

to check and may declare the property holds when the number

of participants are bounded by k ; otherwise, a counterexample is

generated which disputes the property.

If we fail to find a counterexample in the bounded case, we may

proceed to the fairness verification of the properties for unbounded

number of participants. To do that, we modify the harness to ac-

count for an unlimited number of players, instrument it with pro-

gram invariant as well as the desired properties as post-conditions,

and rely on program verification tools to discharge the proof obli-

gations. This either tells us that the property is successfully proved,

or the validity of the property is still unknown, in which case we

are only confident about the fairness for the bounded case.

4.1 Mechanism Model Extraction

To extract a mechanism model out of the smart contract source

code, we first instrument the contract code with a harness program

MechanismHarness shown in Fig. 6. The harness program orches-

trates the interactions of k players with the target contract. This is

achieved by declaring symbolic variables to represent the possible

bid and valuation of each player, stored in the arrays łBIDž (Line 3)

and łVALUEž (Line 4), respectively. Then a for-loop (Lines 5ś19) is

used to simulate the actions performed by the k players. In smart

contract, all players have to move sequentially since parallelization
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Figure 5: Workflow of the FairCon framework.

1 contract MechanismHarness {

2 // k-player bounded model

3 uint BID[k]; // symbolic values

4 uint VALUE[k]; // symbolic values

5 for (uint i=0; i<k; i++) {

6 // Example: msg.sender = i

7 require(@individual.id == toStr(i));

8 // Example: msg.value = BID[i]

9 require(@individual.bid == BID[i]);

10 // Example: bid() function inlined

11 @outcome;

12 // Example: ALLOCATE = highestBidder

13 ALLOCATE = @allocate;

14 // Example: PRICE = highestBid

15 PRICE = @price;

16 // Check loop invariant

17 // PRICE = max(BID[0..i]) ∧ ALLOCATE = argmax(BID[0..i])

18 assert( <invariant> );

19 }

20 // Check post condition

21 assert( <property> );

22 }

Figure 6: Theharness program formechanismmodel orches-

tration.

is not allowed. The ordering is not important, because the players

are symmetric.

We rely on the annotations provided by users (e.g., Fig. 1) to

construct the loop body, which triggers a move from one particular

player. The variables controlling the player’s identifier and bid

value are assigned the corresponding symbolic values (Lines 7 and

9). In the case of Example 2.1, these variables are msg.sender and

msg.value, respectively. Then the allocation function (e.g., bid()

in Example 2.1) is inlined, and the resulting variables annotated by

@allocate and @price are stored as symbolic expressions (Lines

13 and 15). There are also two placeholders at Lines 18 and 21,

for assertions of loop invariant and post conditions, which will be

described in Sect. 4.3.

We then run symbolic execution on the harness program to

collect a set of feasible symbolic paths. Each symbolic path is

represented in the form of łCondition ∧ Effectž, where łConditionž

and łEffectž are Boolean expressions in terms of the symbolic vari-

ables defined earlier (e.g., BID[i] and VALUE[i] in Fig. 6). Here,

łConditionž represents the path condition which enables the execu-

tion of a particular program path; łEffectž represents the values

of the resulting variables (e.g., ALLOCATE and PRICE in Fig. 6). We

take all path conditions Conditionj , where the effect is successfully

computed (i.e., not running into errors or reverts), and use the

disjunction of them as the assumption of the model (i.e., łassume
∨
j Conditionj ž). Similarly, we use the effects as the corresponding

allocation and clear price functions. For example, in the mechanism

model, we have łallocate
∨
j (Conditionj ∧ Effect j [ALLOCATE])ž

and łprice
∨
j (Conditionj ∧ Effect j [PRICE])ž.

4.2 Bounded Property Checking

For property checking, given a mechanism modelM and a property

p, our goal is to construct a formula ϕ such that ϕ is unsatisfiable if

and only ifM |= p. With the semantic rules defined in Sect. 3.3, it

is straightforward to obtain a formula encoding the allocation and

clear price functions, i.e., φM = d(θ ) ∧ t(θ ).

We illustrate the encoding of properties using the truthfulness

as an example. Definition 3.2 states that a model M is truthful if

and only if the truth-telling strategy performs no worse than any

other strategies. Therefore, the high-level idea is to first encode

the truthful and untruthful strategies separately for an arbitrary

player, and then asserting that the utility of the player is higher

when he/she acts untruthfully. The encoding of the truthfulness

property p is shown as follows,

∃i ·∀j · (i , j) =⇒

(φM ∧ (bidi = vali ) ∧ (bidj = valj )) (Truthful)

∧ (φM [bidi/bid
′
i ,ui/u

′
i ] ∧ (bid

′
i , vali )) (Untruthful)

∧ (ui < u ′i ), (Utility)

where i is a generic player with utility ui . The truthful scenario is

when all players (including i) bid the same amount as their valu-

ations, i.e., bidi = vali and bidj = valj . The untruthful model is

constructed by substituting the bid and utility variables of i with

new copies bid ′i and u
′
i , and asserting bid

′
i , vali . Finally, we assert

that ui < u ′i . If p is satisfiable, we find a counterexample where

an untruthful strategy performs better than the truthful strategy.
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Otherwise, the truthful strategy is a dominant strategy for i . The

encodings of other properties are similar.

4.3 Formal Proof for Unbounded Model

Consider the harness program in Fig. 6. The loop iterates k times

to model k players joining in each iteration. We use induction

to prove that the smart contract satisfies the fairness property

for arbitrary number of players. Following the standard approach

to proving program correctness, an invariant for the for-loop is

required, i.e., <invariant> in Fig. 6. Normally, the loop invariant

has to be derived manually. Fortunately, smart contracts are usually

written in a more standard way than arbitrary programs, which

makes it easier to generalize invariants for the same type of smart

contracts, e.g., auctions considered in this work. A set of predefined

invariant templates (according to specific types of contracts) have

to be provided to the framework as inputs (Fig. 5). The followings

are three common types of invariants required for auctions.

ALLOCATE = argmax(BID) (TopBidder)

PRICE =max(BID) (1st-Price)

PRICE =max(BID \ {BID[argmax(BID)]}) (2nd-Price)

The łTopBidderž invariant requires that the bidder with the highest

bid becomes the winner. The ł1st-Pricež invariant requires that

the highest bid is the clear price, while the ł2nd-Pricež invariant

requires that the second highest bid is the clear price.

However, the invariant has to satisfy two conditions to conclude

that the smart contract satisfies the fairness property. To elaborate

on the conditions, we define the following notations. Let the harness

program in Fig. 6 be abstracted as

for( Cond ) { S ; assert(Q) } assert(P),

where Cond is the loop condition, Q and P are the <invariant>

and <property>, respectively, and S represents the statements in

the loop body before the assertion of the invariant. We also need

the strongest postcondition [20] operator for discussion. The nota-

tion sp(Pre, Stmt) represents the strongest postcondition after the

program statement Stmt is executed, provided the precondition Pre

before the execution. For example, sp(x = 2, ‘‘x:=x+1’’) would

be x = 3.

We now formally define the validity for invariants. The invariant

has to satisfy the following two conditions:

(1) the invariant is inductive, i.e., sp(Cond ∧ Q, S) =⇒ Q . Intu-

itively, it means that no matter how many iterations the loop

performs, the invariant always holds.

(2) the invariant is strong enough to guarantee the fairness prop-

erty, i.e., Q =⇒ P .

If the conditions are satisfied, we can conclude that the smart

contract is fair for arbitrary number of players. The validity of the

conditions can be checked by any program verification tools, and

we use Dafny [38] in this work.

Notice that, in the search for valid invariant, we give up those

violating the two validity conditions when analyzing mechanism

models for bounded number of players (c.f. Sect. 4.1). That is, only

those invariants that are valid for the bounded models are con-

sidered in proving for arbitrary number of players. More fairness

properties may be proved when customized invariants are provided.

5 IMPLEMENTATION AND EVALUATION

We implement the proposed approach in our tool FairCon, which

takes an annotated smart contract source code with the fairness

property to be checked as input, extracts its mechanism model for

a finite number of players (c.f. Sect. 4.1), and then automatically

perform symbolic path analysis on the model (c.f. Sect. 4.2). If the

fairness property is violated in one symbolic path, FairCon gener-

ates a counterexample related to that path. All the symbolic path

analysis is achieved based on the Z3 SMT solver. If no counterex-

ample is founded within a finite number of players, FairCon then

tries to prove that the smart contract satisfies the fairness property

based on induction with the set of predefined invariants. During the

process, Dafny [38] is used to check the two validity conditions of

invariants (c.f. Sect. 4.3) to establish the fairness proof. To explore

the capability of our proposed approach in this paper, we evaluated

FairCon to answer the research questions below.

• RQ1: How accurately does FairCon check fairness properties

on smart contracts?

• RQ2: How efficient could FairCon be for mechanism model

extraction and fairness property checking?

• RQ3: What are the common patterns for unfair smart contracts?

5.1 Experiment Setup

Many Ethereum smart contracts are token-based and derived from

standard templates (e.g., there are 259,131 ERC-20 contracts on

Etherscan), but such contracts have little fairness concerns. We

collected 47,037 verified2 smart contracts running on Ethereum

from the Etherscan website, among which we found 129 contracts

whose name or code contains keyword łauctionž. After code re-

view for these smart contracts, we selected 20 typical auction con-

tracts. The contracts that are not selected are either the presale

contracts for auction or the auction contracts that end immediately

after getting one bid, which are not within the scope of our fair-

ness analysis in this paper. These selected contracts are actively in

use, impacting many real users. For example, CryptoRomeAuction,

hotPotatoAuction, and Deed are used to support popular DApps,

and Deed has more than 1,469,061 transactions. In fact, the number

of DApps on Ethereum is small (2.7K), compared with the total num-

ber of contract instances. Among the 20 selected auction contracts,

we found that four auctions completely have the same structure.

Finally, after removing duplicate or similar contracts, we selected 12

distinct auction contracts for our experiments. Apart from auction

contracts, we also selected five voting smart contracts. So totally we

have 17 public smart contracts (12 for auction and five for voting)

for our experiments.

To find counterexamples, we set some configurations on mecha-

nismmodels to be checked. For the auction mechanismmodel, there

are three bidders, and the bid price and the valuation of bidders are

arbitrary while allocation will be for one winner only. Similarly,

for the voting mechanism model, we assume that five voters vote

for two proposals as the basic configuration. Voter votes to any of

proposals randomly, and his ballot could be reflected into the bid

in our mechanism model. Voter has his own valuation for different

proposals, and the winning proposal means the allocation. The

2A contract is labeled łverifiedž on Etherscan if its source code matches with the
deployed version on Ethereum.
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Table 2: Fairness checking on auction contracts.

Contracts
Properties Time (seconds)

T C O E tmodel tcheck

Auction1 ✗ ✗ ✗ ✗ 7.96 0.11

Auction2 ✗ ✗ ✗ ✗ 6.04 0.08

Auction3 ✗ ✗ ✗ ✗ 2.34 0.08

AuctionItem ✗ ✗ ✓ ✗ 1.29 0.08

AuctionManager ✗ ✗ ✗ ✗ 1.61 0.10

AuctionMultipleGuaranteed ✗ ✗ ✗ ✗ 7.48 0.11

AuctionPotato ✗ ✗ ✗ ✗ 2.45 0.07

BetterAuction ✗ ✗ ✓ ✗ 1.58 0.08

CryptoRomeAuction ✗ ✗ ✗ ✗ 7.94 0.08

Deed ✓ ✓ ✗ ✓ 14.25 0.07

EtherAuction ✓ ✓ ✗ ✗ 8.43 0.08

hotPotatoAuction ✗ ✗ ✗ ✗ 5.48 0.09

Table 3: Fairness proving on fair auction contracts in Table 2.

Contracts Allocation Inv. Price Inv. Proved Property

AuctionItem TopBidder 1st-Price O

Deed TopBidder 2nd-Price T, C, E

EtherAuction N/A N/A ś

BetterAuction TopBidder 1st-Price O

actual valuation of winning proposal or failing proposal is the sum

of voters’ valuation to that proposal. On Ethereum voting contracts

are open to users, we assume voter cannot get any utility if the

voter’s supporting proposal is not the winning proposal. And the

valuation of voter to proposal could be measured in two way. The

first is that the valuation is mapped to real number. For instance,

voter may prefer proposal A much more than any other voters

prefer A. That is the situation where voters are heterogeneous. The

second setting assigns 0 or 1 to valuation of voter to proposal. For

instance, voter wants proposal A rather than proposal B. This sim-

plified version could be applied to the situation where the voters

are homogeneous. Under these settings, FairCon checks the four

fairness properties at a given number of participants aiming to find

counterexamples.

With the configurations for mechanism models, we spent 6 hu-

man hours to manually annotate mechanism components and in-

strument the harness in these smart contracts. Our experiments are

conducted on Ubuntu 18.04.3 LTS desktop equipped with Intel Core

i7 16-core and 32GB memory. We discuss the experiment results

in the following subsections. The raw results and the replication

package are available at: https://doi.org/10.21979/N9/0BEVRT.

5.2 Experiment Results

We now discuss the experiment findings in details.

Results for RQ1. To answer RQ1, we evaluated FairCon by the

selected 17 smart contracts with the configurations mentioned in

Sect. 5.1. Tables 2 and 4 show the results for fairness checking

on auction and voting contracts, respectively. In Table 2, the first

column shows the names of the contracts, and the middle four

columns show the result for the four fairness properties: truthful-

ness (T), collusion-freeness (C), optimality (O), and efficiency (E),

Table 4: Fairness checking on voting contracts.

Contracts
Valuation: R Valuation: {0, 1}

tmodel

T C E tcheck T C E tcheck

Association ✗ ✗ ✗ 0.35 ✓ ✓ ✓ 0.37 64.96

Ballot ✗ ✗ ✗ 0.45 ✓ ✓ ✓ 0.81 69.73

Ballot-doc ✗ ✗ ✗ 0.48 ✓ ✓ ✓ 0.56 126.14

HIDERA ✗ ✗ ✗ 0.12 ✓ ✓ ✓ 0.15 52.23

SBIBank ✗ ✗ ✗ 0.27 ✓ ✓ ✓ 0.69 56.59

respectively. The rightmost column indicates the time for mecha-

nism model extraction (tmodel ) and for fairness property checking

(tcheck ). Among the selected 12 contracts, four of them are found to

be fair on at least one fairness property, while the remaining eight

contracts are not fair for all the four fairness properties (with coun-

terexamples generated). We had manually checked the generated

counterexamples and confirmed that they are not false positives.

Regarding the execution time, in our three-bidders experiments,

model extraction time varied from 1.61 to 14.25 seconds because dif-

ferent contracts have different mechanism models to be extracted.

Property checking is much faster than model extraction, which

took around 0.1 seconds for each contract.

Table 3 shows the result of proving fairness properties for the 4

auction contracts that are fair on at least one fairness property, as

shown in Table 2. The first column shows name of contract. The sec-

ond and third columns show the invariant templates that are valid

for proving fairness properties. The last column indicates which

fairness property can be proved (T for truthfulness, C for collusion-

freeness, O for optimality, and E for efficiency). The AuctionItem

and BetterAuction contracts can be proved to satisfy the optimal-

ity property using the allocation invariant łTopBidderž together

with the price invariant ł1st-Pricež, which also confirms that they

are first price auctions. The Deed contract satisfies the łTopBidderž

and ł2nd-Pricež invariants, based on which, FairCon can prove

three properties for Deed, namely, truthfulness, collusion-freeness,

and efficiency. It also confirms that Deed is a second price auction.

The EtherAuction contract is shown in Fig. 7, which is an vari-

ant of second price auction for a designated bid price only. Line

13 requires a fixed new higher bid price to update the four vari-

ables SecondHighestBid, SecondHighestBiddder, HighestBid,

and HighestBiddder in Lines 15ś18, respectively. It turned out

that none of our predefined invariants are valid to prove any fair-

ness property. This is because EtherAuction adopts the strategy

of fixed bid price for each round, which makes it similar to (but

actually not) typical second price auctions.

Table 4 shows the result of property checking for the selected

five voting smart contracts, each of which is for five voters and

two proposals. The first column shows the names of contracts.

The last column, tmodel , shows the model extraction time (in sec-

onds). The middle two large columns show the average property

checking time (in seconds) for the three properties: truthfulness (T),

collusion-freeness (C) and efficiency (E). We have two settings for

the valuation component in our mechanism model. One is ranging

over real numbers R, while the other is ranging over {0, 1}. The

reason of having two settings is that no contract was found fair

regarding any property, as shows in the second large column of
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1 contract EtherAuction {

2 //Anyone can bid by calling this function and supplying the

corresponding eth→֒

3 function bid() public payable {

4 require(auctionStarted);

5 require(now < auctionEndTime);

6 require(msg.sender != auctioneer);

7 // If sender is already the highest bidder, reject it.

8 require(highestBidder != msg.sender);

9 address _newBidder = msg.sender;

10 uint previousBid = balances[_newBidder];

11 uint _newBid = msg.value + previousBid;

12 // Each bid has to be 0.05 eth higher

13 if (_newBid == highestBid + (5 * 10 ** 16)) return;

14 // The highest bidder is now the second highest bidder

15 secondHighestBid = highestBid;

16 secondHighestBidder = highestBidder;

17 highestBid = _newBid;

18 highestBidder = _newBidder;

19 latestBidTime = now;

20 // Update the bidder's balance so they can later withdraw

any pending balance→֒

21 balances[_newBidder] = _newBid;

22 }

23 }

Figure 7: The EtherAuction Solidity source code.

Table 4, because the diverse R valuation of proposals brings the

incentive for voters to lie and to conspire with others. In the {0, 1}

valuation setting, as shows in third large column of Table 4, all

the five contracts are truthful, collusion-free, and efficient. This

is because, if a voter lies, he/she gets at most zero worth utility,

and thus has no incentive to lie. Based on Table 4, we can observe

that fairness property may depend on the configuration of mecha-

nism models. Different configurations may have different results

on fairness property checking.

The checking time for the optimality property is not listed in Ta-

ble 4 because smart contracts for voting do not have the component

of transfer functions in our mechanism model so that optimality

cannot be defined (c.f. Sect. 3.2). In addition, none of the predefined

invariants are valid to prove that the five selected voting contracts

are fair.We need to construct other valid invariants manually, which

is one of our future works.

Answer to RQ1: Since there is a lack of ground truth, we

manually investigated the cases and the results of FairCon

were confirmed.

Results for RQ2. The time costs studied in RQ2 can be divided

into two parts: model extraction and property checking. Overall,

the model extraction takes much longer time and the property

checking is efficient (taking less than one second for each case), as

shown in Tables 2 and 4.

To explore the efficiency of FairCon further, we selected the

CryptoRomeAuction contract to make performance experiments

on FairCon. Figures 8 and 9 show the execution time for mecha-

nism model extraction and fairness property checking when the

number of bidders increases, respectively. In Fig. 8, the x-axis shows

the number of bidders, while the y-axis shows themechanismmodel

extraction time in seconds. We can observe that model extraction

time is nearly exponential to the number of bidders involved, which

is reasonable because every participant is independent. When the

number of bidders is under six, the model extraction time is less
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than 10 minutes, which is tolerable. Once the number of bidders

goes beyond six, the time increases exponentially.

Figure 9 shows the property checking time, where the x-axis

indicates the number of bidders, and the y-axis indicates the prop-

erty checking time in seconds. We can observe the same trend as

that in Fig. 8, i.e., the execution time is exponential to the number

of bidders involved. However, property checking is much faster

than model extraction since model extraction requires symbolic

execution, which is heavy in computation. Mostly the checking

time is less than one second. We can also observe that the checking

time for truthfulness or collusion-freeness is at least doubled than

that for optimality and efficiency. This is because truthfulness and

collusion-freeness properties need to consider the strategy as well

as the outcome spaces, while optimality and efficiency properties

only have to consider the outcome space.

Running FairCon on a large number (i.e., k , which is theoreti-

cally unbounded) of players is impractical for symbolic execution.

The results indicate that FairCon can finds counterexample(s) with

small k (e.g., three to five), if the contract is indeed unfair (e.g., k = 3

in Table 2 and k = 5 in Table 4). Otherwise, as shown in Table 3,

FairCon could use invariants observed during the small k runs in

an attempt to prove that the fairness property holds for arbitrary

values of k .
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Answer to RQ2: Although model extraction is the bottleneck

of FairCon, it is a one-time task and need not be performed for

a large k . FairCon is efficient for fairness property checking.

Results for RQ3. Fairness issues in smart contracts are real. For ex-

ample, EtherAuction (as shows in Fig. 7) was reported as a scam,3

where bidders compete for one Ether by gradually increasing their

bids. Our results confirmed its unfairness: although truthfulness

and collusion-freeness holds for a bounded k , optimality and effi-

ciency are violated. Based on our review of the subject contracts,

we summarize some patterns below.

(1) Contracts implementing the first price auction and their vari-

ants do not satisfy the truthfulness property. For example, the

aforementioned BetterAuction is implementing a typical open

first price auction, where the top bidder has the incentive to

lower his/her bid price but still remain the winner.

(2) Contracts implementing the first price auction and variants

do not prevent against collusion. For example, BetterAuction

does not satisfy the collusion-freeness property, since two bid-

ders have the chance to lower the clear price and to be the

winner, increasing their group utility.

(3) Contracts implementing the second price auction and their

variants do not satisfy the optimality property. For example,

Deed is one of the contracts implementing the second price

auction. Since the clear price is the second highest bid, the

contract may not be optimal with a potential decrease in total

revenue.

(4) Contracts implementing the first price auction and their vari-

ants are not efficient. This is because first price auctions are

untruthful, and the winner may not be the one who has the

highest valuation of the item.

We envision that fairness checking be included as a part of the

common-practice validation process to improve users’ confidence

towards DApps powered by smart contracts. We hope the fairness

issues in smart contracts can be mitigated by alerting developers

and users these common patterns.

5.3 Threats to Validity

Our evaluation results are subject to common threats to validity.

Lack of ground truth. It lacks ground truth for the contracts and

properties we studied. Two of the authors manually inspected the

subjects and our results independently, which took around half an

hour for each contract. We confirmed that the counterexamples

provided by our tool are valid.

External validity. The types of contracts and properties consid-

ered in this work are limited. Our findings may not be generalized to

other cases. The DApps implemented with smart contracts usually

follow typical patterns, mainly due to the limitations on language

syntax and considerations on gas consumption. We believe that

other types of game-like contracts would behave similarly.

3https://hackernoon.com/take-your-chances-at-the-ether-auction-game-
30f9df1ec80b

6 RELATED WORK

Our work is closely related to the following research areas: (1) the

functional correctness and security analysis of smart contracts,

(2) the verification of fairness properties in traditional software

systems, (3) and mechanism design as well as game theory.

6.1 Smart Contract Analysis and Verification

Since smart contract applications are often used to manage a large

sum of funds, detection of security flaws in smart contracts received

a lot of attention. The violation of important security properties

leads to many well-known smart contract vulnerabilities [54]. For

example, a smart contract which fails to check the return value

of a (possibly failed) external call operation, has the unchecked

call vulnerability [25, 48]. The execution logic of a smart contract

that is not independent of environmental variables, e.g., the block

timestamp, is prone to dependence manipulation [59], including the

timestamp dependency vulnerability [39]. If the business logic of a

smart contract depends on its mutable state parameters, such as

balance and storage, then it has the transaction-ordering dependence

problem. A smart contract is reentrant, if provided with enough

gas, an external callee can repeatedly call back into it within a

single transaction. Missing permission checks for the execution of

a transfer or a selfdestruct operation make a smart contract

prodigal and suicidal, respectively [44]. Absence of proper checks

for arithmetic correctnessmake Ethereum contracts prone to integer

and batch overflow/underflow [22, 51]. Furthermore, the progress

of a smart contract can be compromised by gas-exhaustive code

patterns [16, 24].

To address these security issues, Ellul et al. developed a runtime

verification technique, ContractLarva [21], to rule out certain unsafe

behaviors during the execution of smart contracts. Oyente [2, 39]

is one of the first to detect smart contract vulnerabilities using

symbolic execution. ContractFuzzer [31] is among the early fuzz

testing tools and Mythril [1] is a well-known security analysis tool

which combines symbolic execution and taint analysis to detect

nearly 30 classes of vulnerabilities. There are many other tools [14,

34, 50, 52, 55, 57, 58] designed for the similar purpose.

Another popular direction is using formal techniques to ensure

the functional correctness of smart contracts. Bhargavan et al. de-

vised a functional programming language, named F ∗ [12], to facil-

itate the formal verification of Ethereum smart contracts. Based

on F ∗, Grishchenko et al. presented the first complete small-step

semantics of EVM bytecode [25]. Hildenbrandt et al. presented an

executable formal semantics for the Ethereum platform, named

KEVM [27], based on which, Park et al. [46] presented a deduc-

tive verification tool, capable of verifying various high-profile and

safety-critical contracts. Jiao et al. developed the operational for-

mal semantics for the Solidity programming language, named K-

Solidity [32, 33]. Abdellatif et al. [7] formalized blockchain and

users’ behaviors to verify properties about their interactions using

statistical model checking. Nehai et al. [43] applied model checking

to verify smart contracts from the energy market field.

Most of the smart contract analyses mentioned above focus on

finding bugs or security vulnerabilities, which highlightmismatches

between contract developers’ expectations and how the contract

code work; whereas the fairness issues considered in our paper
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highlight mismatches between the contract users’ expectations and

the actual implementation of the game rules.

6.2 Fairness Checking in Software Systems

We believe that fairness should be considered a software quality

attributeÐamong functional correctness, security, privacy, etc.Ðone

needs to consider throughout the software development process.

Smart contract is an emerging type of software application with

often multiple interacting participants, where fairness becomes a

lot more relevant.

The problem of algorithmic fairness is considered in many mod-

ern decision-making programs [8, 19, 62], either learned from data

or created by experts. The term łfairnessž can be subjective depend-

ing on the actual contexts. Verma and Rubin [56] collected defini-

tions of fairness from different software domains and explained

the rationales behind these definitions. From the software specifi-

cation and verification perspective, Albarghouthi et al. [8] treated

decision-making algorithms as probabilistic programs and proposed

to verify formally defined fairness properties on a wide class of pro-

grams. D’Antoni et al. [9] introduced the concept of fairness-aware

programming and presented a specification language and runtime

monitoring technique which allow programmers to specify fairness

properties in their code and enforce the properties during execu-

tions. In general, the fairness definition in such decision-making

programs is that the program shows no bias towards certain groups

of users. There is little consideration in terms of the interactions,

interests, and conflicts between users and programs, or between

users and users.

With regard to smart contracts, Bartoletti et al. [10] found through

a survey that nearly 0.05% of the transactions on Ethereum could

be owing to Ponzi schemes. Chen et al. [17] identified patterns in

contract applications implementing Ponzi schemes, and built a clas-

sifier to detect suspicious schemes using data mining and machine

learning. Such contracts can be considered violating fairness prop-

erties, in the sense that not all participants have the same chance

of gaining profits. In this work, we expand the notion of fairness in

smart contracts to include any properties expressible in mechanism

models.

6.3 Mechanism Design and Game Theory

Mechanism design has beenwell studied in the economic domain [29,

36, 37, 40]. These works offer the theoretical foundation for our

model extraction and fairness verification. Many fairness properties

we used in this paper are also inspired by them. Maskin [40] articu-

lated some important concepts, such as outcomes and social goals,

in implementation theory, which is a part of mechanism design.

He offered a well-defined example to show how to achieve social

goals. Jackson [29] presented mechanism theory in a full view and

provided formal definitions to many concepts belonging to this

domain, while Klemperer [36] introduced the most fundamental

concepts for auction and carried out a thorough analysis of op-

timal auctions, the equivalence theorem, and marginal revenues.

Lehmann [37] revealed how to exploit truth revelation in realizing

approximately efficient combination auction which emphasized the

co-exist problem of optimal auction and efficient auction.

Mechanism design and game theory were also applied on the

smart contract design. Hahn et al. [26] implemented a Vickrey

second price auction on a smart contract to setup and operate a

market of energy exchanges. Similarly, Chen et al. [18] provided an

e-auction mechanism based on blockchain to ensure confidentiality,

non-repudiation, and unchangeability of the electronic sealed bid.

CReams [61] implemented a collusion-resistant k-Vickery auction.

Galal and Youssef [23] presented a smart contract protocol for a

succinctly verifiable sealed-bid auction on the Ethereum blockchain

to protect bidders’ privacy. Mccorry et al. [41] proposed the first

implementation of a decentralized and self-tallying internet voting

protocol using smart contract to guarantee secure e-voting. Bigi et

al. [13] combined game theory and formal models to analyze and

validate a decentralized smart contract protocol, named DSCP, and

used game theory to analyze users’ behavior. Chatterjee et al. [15]

studied two-player zero-sums games and performed a quantitative

analysis of players’ worst case utilities. These works employ cer-

tain levels of fairness analyses, mostly manual, on some one-off

applications. In contrast, we provide a more general framework

with maximal automation support.

7 CONCLUSION AND FUTUREWORK

In this paper, we proposed an approach to analyze fairness proper-

ties of smart contracts. We implemented FairCon to automatically

extract mechanismmodels from smart contracts with user-provided

annotations, and experimentally evaluated it on 17 real-world auc-

tion and voting contracts. The experiment results indicate that

FairCon is effective in detecting property violations and able to

prove fairness for common types of contracts.

In the future, we would like to apply FairCon to other types of

smart contracts beyond auction and voting. It can also be extended

to check for other types of fairness properties that are critical in

maintaining the integrity of blockchain applications.
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