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ABSTRACT

Equivalence checking techniques help establish whether two ver-

sions of a program exhibit the same behavior. The majority of

popular techniques for formally proving/refuting equivalence re-

lies on symbolic execution ś a static analysis approach that reasons

about program behaviors in terms of symbolic input variables. Yet,

symbolic execution is difficult to scale in practice due to complex

programming constructs, such as loops and non-linear arithmetic.

This paper proposes an approach, named ARDiff, for improving

the scalability of symbolic-execution-based equivalence checking

techniques when comparing syntactically-similar versions of a pro-

gram, e.g., for verifying the correctness of code upgrades and refac-

toring. Our approach relies on a set of novel heuristics to determine

which parts of the versions’ common code can be effectively pruned

during the analysis, reducing the analysis complexity without sac-

rificing its effectiveness. Furthermore, we devise a new equivalence

checking benchmark, extending existing benchmarks with a set

of real-life methods containing complex math functions and loops.

We evaluate the effectiveness and efficiency of ARDiff on this

benchmark and show that it outperforms existing method-level

equivalence checking techniques by solving 86% of all equivalent

and 55% of non-equivalent cases, compared with 47% to 69% for

equivalent and 38% to 52% for non-equivalent cases in related work.

CCS CONCEPTS

· Software and its engineering→ Software evolution.

KEYWORDS

Equivalence checking, program analysis, symbolic execution.

ACM Reference Format:

Sahar Badihi, Faridah Akinotcho, Yi Li, and Julia Rubin. 2020. ARDiff: Scal-

ing Program Equivalence Checking via Iterative Abstraction and Refinement

of Common Code. In Proceedings of the 28th ACM Joint European Software

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’20, November 8ś13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3409757

-

+

-

+

1

2
3

4
5
6

7
8

9
10
11

11
12

13
14
15

16
17

17
18
19

20

bessel(norm, arg){

acc = 200;
res = 1;

bess = Math.pow(2, norm) * norm;
twoarg = 2 * arg;
if(norm <= 0){

res = arg *  Math.pow(2, norm);
return res;

}
if(arg == 0) {

res = twoarg * bess;

res = twoarg;
} else {

for(j = 1; j <= norm; j--){
bess = j * acc * twoarg;
res = res + Math.pow(2, bess);

}
res = res / (200 + bess);

res = res / (acc + bess);
}
return res;

}

Figure 1: Program Versionsm andm′.
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1 INTRODUCTION

Equivalence checking establishes whether two versions of a pro-

gram have identical behavior and is used in a variety of tasks, such

as verifying the correctness of software upgrades, refactoring, and

optimization [30]. The most common form of equivalence used in

practice is functional equivalence, which establishes whether two

terminating versions of a program produce the same output for any

identical input [25, 38].

For example, Figure 1 shows the simplified code of two con-

secutive versions of a method m and m′ that calculates Bessel’s

differential equation, which is often used in scientific computing

and signal processing [40]. We adopt a Git-style representation of

versions [1], where lines prefixed by ł+ž are insertions of state-

ments in versionm′ that were not present inm and lines prefixed

by ł-ž are deletions of statements that were present in versionm.

Despite syntactical differences, these two versions are functionally
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equivalent and the goal of our work is to prove equivalence or

non-equivalence of such cases.

Symbolic execution [28] ś a static program analysis technique

that uses symbolic rather than concrete values to represent pro-

gram inputs ś is one popular approach for establishing functional

equivalence. With symbolic execution, a program is represented by

a first-order logic formula over symbolic variables, which captures

each program execution path as a conjunction between path condi-

tion and path effect: the first is the formula constraining values that

enable the executing of the path and the second describes values

computed along the path. This representation is referred to as a

program symbolic summary. Establishing functional equivalence

between two versions of a program then translates into the problem

of establishing equivalence between their summaries, usually us-

ing solvers for Boolean Satisfiability (SAT) or Satisfiability Modulo

Theories (SMT) [14, 18, 38].

The limitations of symbolic execution arewell-known: unbounded

loops and recursions lead to a large number of paths and the exact

number of iterations is difficult/impossible to determine statically.

For the example in Figure 1, the number of iterations of the for loop

in lines 13-16 depends on the exact value of the input parameter

norm, which is unknown during static analysis. Thus, most tech-

niques rely on a user-specified bound for the number of iterations,

e.g., two or five. Bounded symbolic execution is not as complete as

the unbounded one and might miss feasible behaviors, e.g., in the

sixth execution of the loop. Furthermore, complex expressions in

symbolic summaries, such as non-linear integer arithmetic, might

lead to expressions in summaries that are intractable for modern

decision procedures, which produce an ‘unknown’ result in these

cases [15, 47]. An example of such non-linear arithmetic is the

power operation in lines 4 and 15 of Figure 1.

In the context of functional equivalence checking, two main ap-

proaches for dealing with these limitations of symbolic execution

have been proposed: Differential Symbolic Execution (DSE) [38]

uses uninterpreted functions ś function symbols that abstract in-

ternal code representation and only guarantee returning the same

value given the same input parameters ś to abstract syntactically

identical segments of the code in the compared versions, e.g., the

code in lines 2-9 as well as in lines 13-16 in Figure 1. The main

idea behind this approach is to hide the complexity of this common

code and skip executing it symbolically. That is, while the łnaïvež

approach for constructing symbolic summaries of the methodsm

andm′ in Figure 1 would unwind the loop in lines 13-16 up to a

user-specified bound, the execution of this loop can be skipped al-

together as it does not affect the equivalence of these methods: the

values computed in the loop are used in the same manner in both

symbolic summaries of versionsm andm′. Even in the presence of

uninterpreted functions, the equivalence of these summaries can

be established by an SMT solver using the theory of equality and

uninterpreted functions [8, 29].

However, abstracting all syntactically identical code is not ef-

fective: first, it can abstract away important information needed

to establish equivalence. For example, the code acc = 200 in line 2,

albeit common to both methods, is essential for establishing equiv-

alence of statements res = res / (200 + bess) and res = res / (acc +

bess) in line 17. That is, an over-approximation introduced by ab-

straction may lead to spurious false-negative results, characterizing

programs as not equivalent when they are, in fact, equivalent. That

happens because values assumed for uninterpreted functions may

not correspond to real code behavior. Second, introducing numer-

ous uninterpreted functions, with complex relationships between

them, may result in unnecessary complexity in symbolic summaries,

producing ‘unknown’ results that could be eliminated when the

abstracted away code is relatively simple and is used łas isž.

The regression verification using impacted summaries (IMP-S)

approach [6] proposes an alternative way to abstract complex code.

Instead of identifying common code blocks, it uses static analysis

to identify all statements impacted by the changed code. The tool

then prunes all parts of symbolic summaries that do not contain

any impacted statements. The authors of IMP-S formally prove

that the results produced by such an approach are correct for a

given loop bound, i.e., if the approach determines the compared

programs equivalent (non-equivalent) they indeed are equivalent

(non-equivalent) for that bound. However, this approach assumes

that all impacted statements, including common statements with

complex logic, can affect the decision about the equivalence of

two programs. This assumption results in inclusion of unnecessary

statements and constraints in the symbolic summaries, leading

to ‘unknown’ results that could otherwise be eliminated. Another

weakness of this approach is that the conservative nature of static

analysis may mark certain unimpacted statements as impacted,

further inflating the produced summaries.

ModDiff [45] and CLEVER [34] focus on extending equivalence

analysis to work in an inter-procedural manner. While these tech-

niques also perform some pruning of common code, they only

do that at a path level, eliminating full path summaries only if

the entire path contains no changed statement. At a method-level,

these techniques thus suffer from the same and even more severe

limitation than IMP-S.

To summarize, the techniques proposed by existing work suffer

from false-negatives and are unable to eliminate a large portion

of undecidable cases, i.e., cases when an SAT/SMT solver returns

‘unknown’ as the result. That is because they are either too con-

servative and abstract larger portions of the program than actually

needed to establish equivalence (DSE) or leave unnecessary parts

of the program in the summaries and prevent the solver from suc-

cessfully resolving these cases (IMP-S, ModDiff, CLEVER).

In this paper, we propose a method level analysis for abstract-

ing a portion of code statements, aiming to arrive at an optimal

abstraction which hides complex statements not necessary for es-

tablishing equivalence while keeping statements needed to prove

equivalence. The goal of our work is to decrease the number of

‘unknown’ results and increase the number of provable results

(without loop bounding) compared with earlier work. Inspired by

the Counterexample-Guided Abstraction Refinement (CEGAR) par-

adigm [13], our approach, implemented in a tool named ARDiff,

conservatively abstracts all unchanged blocks, as done by DSE, and

then iteratively refines these abstracted blocks, guided by a set of

heuristics for identifying the most prominent refinement candi-

dates. Unlike prior work that mostly focuses on reducing the size

of symbolic summaries, treating their complexity as a side effect,

our approach balances the size, the complexity, and the expressive-

ness of the summaries, aiming at producing concise yet solvable

expressions.
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To evaluate the efficiency and effectiveness of ARDiff, we ex-

tend the set of benchmarks collected by Li et al. [32], which were

inspired by classical numerical computation functions and were

used for evaluating symbolic execution methods in the presence of

complex path conditions and non-linear functions [19, 44]. For ex-

ample, the bess benchmark used as the baseline for our motivating

example in Figure 1 contains 17 methods used to compute Bessel’s

differential equation. Another benchmark, tsafe, contains three

methods borrowed from an aviation safety program that predicts

and resolves the loss of separation between airplanes.

We adapted these benchmarks for the equivalence checking

context by systematically injecting realistic changes into each of the

57 benchmark’s methods, producing one equivalent and one non-

equivalent version of each method. We opted for using benchmarks

by Li et al., in addition to those introduced by Trostanetski et al. [34,

45], for our evaluation because the latter benchmarks are relatively

small and contain no complex constraints.

We compare the efficiency and effectiveness of ARDiff for estab-

lishing method-level equivalence with that of existing work: DSE

and IMP-S. Our evaluation results show that ARDiff is able to es-

tablish equivalence in 63 out of 73 cases (86%) and non-equivalence

in 38 out of 69 cases (55%). For equivalent cases, this is substan-

tially higher than the results produced by IMP-S and DSE: 51 and

35 cases, respectively. For non-equivalent cases, ARDiff performs

comparably and even slightly better than other tools: it is able to

solve 37 out of 69 non-equivalent cases while IMP-S solves 36 and

DSE ś 27 cases.

Contributions. This paper makes the following contributions:

(1) It introduces a CEGAR-like abstraction/refinement approach

that uses uninterpreted functions to abstract a large portion of

common code and employs a number of heuristics helping to

refine only abstractions that are needed to determine equiva-

lence.

(2) It provides the first publicly-available implementation of DSE

and IMP-S, as well as our novel approach named ARDiff, all in

a generic framework for determining method-level functional

equivalence.

(3) It introduces a non-trivial benchmark for method-level func-

tional equivalence checking, with 57 samples of equivalent and

non-equivalent method pairs. The samples of the benchmark

include loop and complex non-linear arithmetic.

(4) It empirically demonstrates the effectiveness and efficiency of

ARDiff compared with DSE and IMP-S.

Our implementation of ARDiff, DSE, and IMP-S, as well as our

experimental data, are available online [5].

Organization. The remainder of the paper is structured as follows.

Section 2 provides the necessary background and definitions used

for the rest of the paper. We discuss existing techniques and outline

their limitations that motivated our work in Section 3. We describe

the main idea behind ARDiff in Section 4 and its implementation

in Section 4.4. Section 5 describes our evaluation methodology,

including benchmark construction, and the evaluation results. We

discuss the related work in Section 6 and conclude the paper in

Section 7 with a summary and suggestions for future research.

2 BACKGROUND

In this section, we provide the necessary background on program

analysis and equivalence checking that will be used in the remainder

of the paper.

Programs. We formalize the ideas in the paper in the context of

a simple imperative programming language where all operations

are either assignments or method calls and all variables range over

integers and doubles. We assume that each program method m

performs a transformation on the values of the input parameters

and returns a set of values. Without loss of generality, we represent

m’s printing statements as return values and also assume that global

variables can be passed as input parameters and return values

along each path of the method. We assume that methods have no

additional side-effects. We also assume that all executions of m

terminate, but this assumption does not preventm from possibly

having an infinite number of paths, such as in the case where there

is a loop whose number of iterations depends on an input variable.

Control and Data Dependencies. For two statements s1 and s2,

we say that s2 is control-dependent on s1 if, during execution, s1
can directly affect whether s2 is executed [23]. For the example in

Figure 1, statements in lines 2-6, 10, and 19 are control-dependent

on the method definition in line 1. Statements inside the for loop

in lines 14 and 15 are control-dependent on the loop declaration in

line 13 which, in turn, is control-dependent on the if statement in

line 10.

We say that statement s2 is data-dependent on statement s1 if s1
sets a value for a variable and s2 uses that value. For the example in

Figure 1, the statement in line 8 is data-dependent on the statement

in line 7 because it uses the value of the variable res set in line 7.

Symbolic Summaries. Symbolic execution [28] is a program anal-

ysis technique for evaluating the behavior of a program on all

possible inputs. It starts by assigning symbolic values to all input

parameters. For the example in Figure 1, we denote the two sym-

bolic inputs corresponding to input parameters norm and arg (line

1) by N and A. It then executes a program with symbolic rather

than concrete inputs.

A symbolic summary for a method m is a first-order formula

M over a set of input parameters and output variables. To build

a symbolic summary, the symbolic execution technique system-

atically explores all execution paths of a method, maintaining a

symbolic state for each possible path. The symbolic state consists

of two parts: path condition ś a first-order formula that describes

the conditions satisfied by the branches taken along that path, and

effect ś a mapping of program variables to expressions calculating

their values in terms of symbolic inputs.

To collect all paths, when a conditional statement, such as if or

for , is reached during the symbolic execution, the symbolic state of

the explored path is cloned and two paths are created: in one the

path condition is conjuncted with the predicate of the condition

and in the other ś with its negation; symbolic execution then con-

tinues to explore both paths independently. For non-conditional

statements, such as assignments, it extends the symbolic state with

a new expression that associates the variable on the left-hand side

of the assignment with the symbolic expression for calculating its

value. For example, the condition on the path spanning the lines
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1-9 in both versions of the method in Figure 1 is N ≤ 0 and the

effect of the path is Ret=A*Math.pow(2,N), where Ret represents the

output variable andMath.pow represents the power operation from

non-linear arithmetic. The effect is calculated as a multiplication of

arg and Math.pow(2,N) (line 7).

The exact number of loop iterations can depend on values of

input variables, which are unknown statically, e.g., in the for loop

in lines 13-16 of Figure 1. To compute the symbolic summary, the

loops are thus bounded to a particular user-defined value. With a

bound of 2, the loop in our example induces two paths: with one

and with two iterations over the loop. Skipping the loop altogether

(zero iterations) is impossible in this program because the loop is

reachable only if the value of norm is greater than 0 (see lines 6-9).

With loop bounding, symbolic execution has the potential to under-

approximate the program’s behaviors, e.g., those that happen in

subsequent iterations of the loop.

A symbolic summary of a path is a conjunction of its path condi-

tion and symbolic state, e.g.,N ≤ 0∧Ret = A∗Math.pow(2,N ). The

symbolic summary of a method is a disjunction of symbolic sum-

maries of all its paths. E.g., the symbolic summary of the method

m in Figure 1, with the loop bound of 2, is:

(N ≤ 0 ∧ Ret = A ∗Math.pow(2,N )) ∨

(N > 0 ∧A = 0 ∧ Ret = 2 ∗A ∗Math.pow(2,N ) ∗ N ) ∨

(N > 0 ∧A , 0 ∧ N = 1 ∧ Ret = (1 +Math.pow(2, 400 ∗A))/(200 + (400 ∗A))) ∨

(N > 0 ∧A , 0 ∧ N = 2) ∧

Ret = ((1 +Math.pow(2, 400 ∗A)) +Math.pow(2, 800 ∗A))/(200 + (800 ∗A)))

Versions. We denote by m and m′ two successive versions of a

method. We assume thatm andm′ have the same method name

and input parameters (otherwise ś they are not equivalent). We

consider common all statements that are syntactically identical in

m andm′. Statements added inm′ are referred to as insertions and

statements removed form are referred to as deletions; we represent

statement updates as a deletion of an old statement and an insertion

of a new one. For the example in Figure 1, statements in lines 11

and 17 are updates, represented by deletion and insertion of the

corresponding statements inm andm′.

Symbolic-Execution-Based EquivalenceChecking.Two input

methodsm andm′, with symbolic summaries M and M ′, respec-

tively, are functionally equivalent ifM is logically equivalent to M ′.

An equivalence assertion is a first-order logic formula Φ that helps

determine such equivalence [38]: Φ = ¬(M ⇔ M ′).

This formula is typically given to a SAT or SMT solver [14, 18],

which either proves that no satisfying assignment to this formula

exists, meaning thatm andm′ are equivalent, or finds a counterex-

ample to demonstrate non-equivalence. That is, the satisfiability of

Φ indicates thatm andm′ produce different outputs for at least one

input. If a solver cannot find any satisfying assignment for Φ ś i.e.,

the result is UNSAT ś the methods are equivalent.

Symbolic summaries can contain uninterpreted functions, i.e.,

functions that are free to take any value [29]. The equality logic

with uninterpreted functions relies on functional consistency ś a

conservative approach to judging functional equivalence which

assumes that instances of the same function return the same value

if given equal arguments. We leverage this quality of uninterpreted

functions to abstract portions of common code and also to model

method calls.

Symbolic-execution-based equivalence checking approaches rely

on SAT or SMT solvers, such as Z3 [17], to find satisfying assign-

ments for equivalence assertions. Yet, as the satisfiability problem

with non-linear constraints is generally undecidable and practically

difficult, our goal is to simplify these formulas and eliminate a large

portion of ‘unknown’ results.

3 MOTIVATING EXAMPLE

In this section, we use the example in Figure 1 to describe two

existing solutions for method-level functional equivalence, DSE

and IMP-S, and outline their limitations. We introduce our solution

that addresses these limitations in the following section.

Differential symbolic execution (DSE). Person et al. [38] are

among the first to use symbolic execution for program equivalence

checking. DSE uses uninterpreted functions to abstract common

parts of the compared code, thus skipping portions of the program

that are identical in two versions and reducing the scope of the

analysis. For the example in Figure 1, there are three common code

blocks: in lines 2-5, line 7, and lines 13-16. The return statements

(lines 8 and 21 in both versions), even if common, are not abstracted

as they capture the effect of the entire path and are required by the

symbolic execution engine for producing the summary.

For each common block, the tool collects all variables that are

defined in the block and represents each variable as an uninterpreted

function which accepts as inputs all variables that are used in the

block. For example, for the block in line 7, res is the output which

is represented by an uninterpreted function: UF 7
r es (A,N ).

The benefits of using uninterpreted functions can be realized

when two symbolic summaries are compared with each other: in

this example, the equivalence assertion for establishing equiva-

lence of these two paths reduces to ¬(UF 7
r es (A,N ) ⇔ UF 7

r es (A,N )),

which can be determined unsatisfiable using the theory of uninter-

preted functions [29]. As in evolving software common code blocks

are expected to appear more frequently than changed code, such an

approach has a potential to łhidež loops and complex expressions,

leading to more łsolvedž equivalence cases and more łcompletež

solutions than that of a łnaïvež checker with loop bounding.

However, as discussed in Section 1, abstracting all syntactically

identical code is not effective for two reasons. First, even if a solver

determines that an equivalence assertion is satisfied, i.e., the method

summaries are non-equivalent, this can be a false-negative result if

the satisfying assignment allocates to an uninterpreted function a

value that it cannot take in practice. For example, the uninterpreted

function UF 2
acc () representing the code in line 2 of Figure 1 cannot

take any value other than 200. Moreover, introducing numerous

uninterpreted functions may result in unnecessary complexity in

symbolic summaries, producing ‘unknown’ results that could be

eliminated if the abstracted code is simple, like in lines 2 and 3 of

Figure 1. Thus, there is a need for a decision process establishing

which parts of the common code need to be abstracted away and

which are not. We address this need in our work.

IMPacted Summaries (IMP-S) [6]. Instead of identifying com-

mon code blocks, Bakes et al. [6] propose a technique that uses static

analysis, namely, forward and backward control- and data-flow

analysis, to identify all statements impacted by the changed code.

The tool then prunes all clauses of symbolic summaries that do not
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Figure 2: ARDiff Architecture.

contain any impacted statements. For the example in Figure 1, state-

ments in lines 4, 5, 11, 15, 17, and 19 are impacted by the change in

line 11. Since only the statements in lines 6, 7, and 8 are used in the

summary of the path in lines 2-9 (N ≤ 0∧ Ret=A*Math.pow(2,N))

and none of these statements are impacted by the change, the

summary of this path can be pruned from the method’s symbolic

summary altogether.

The main limitation of this approach lies in the assumption that

all impacted statements are required for deciding equivalence of

two programs. This assumption results in inclusion of unnecessary

statements and constraints in the symbolic summary. For example,

the path in lines 2-5, 12-19 contains the impacted statement in line

15. As such, IMP-S keeps the complex formula introduced by this

statement,Math.pow, in the symbolic summary and, as a result, also

has to bound the for loop that controls this statement (lines 13-16).

Due to the complexity introduced by the statement, the output

of the tool for this case is ‘unknown’. Yet, the statement in line

15 is common between the two versions of the program and can,

in fact, be abstracted away, without hindering the decision about

the equivalence of the methods. That is, the approach (a) leads

to unnecessary ‘unknowns’ and also (b) often requires bounding

loops, even when the execution of the loop can be abstracted away

altogether. Like in the case of DSE, establishing which parts of

the statements are required for determining equivalence, without

inflating symbolic summaries, is a challenging task.

4 OUR APPROACH

In this section, we provide a high-level overview of ARDiff and

demonstrate its operation on the methodsm andm′ in Figure 1. We

then describe its main process ś selecting refinement candidates ś

in detail. Finally, we formally prove the correctness of the output

produced by the tool.

4.1 ARDiff Overview

ARDiff obtains as input two versions of a method,m andm′, and

reports whether these versions are equivalent (denoted by EQ) or

non-equivalent (denoted by NEQ). If equivalence cannot be estab-

lished, it returns unknown (denoted by UNK).

A high-level overview of ARDiff is given in Figure 2. It is in-

spired by the CEGAR abstraction/refinement loop [13], aiming to

arrive at the optimal abstraction which hides complex statements

while refining statements needed to prove equivalence. As the first

step, ARDiff abstracts all syntactically equivalent statements in

m andm′ using uninterpreted functions, as done in DSE [38] and

discussed in Section 3. It then produces symbolic summaries for

the abstracted methods (denoted byM andM ′) and generates the

equivalence checking assertion Φ = ¬(M ⇔ M ′) (step 2 in Fig-

ure 2).

For the example in Figure 1, ARDiff abstracts three common

blocks: in lines 2-5, 7, and 13-16. That produces seven uninter-

preted functions: UF 2
acc (), UF

3
r es (), UF

4
bess
(norm), UF 5

twoarд(arд),

UF 7
r es (arд,norm),UF

14
bess
(arд,norm),UF 14

bess
(acc, twoarд,norm), and

UF 15
r es (res,bess,norm). The input parameters of these uninterpreted

functions will be replaced by their corresponding symbolic values

during the symbolic execution; the produced assertionΦ, with three

symbolic paths in bothM andM ′, is shown in Figure 3a.

Next, Φ is passed to an SMT solver (step 3 in Figure 2). If the

solver determines that it does not have a satisfying assignment, i.e.,

the functional summaries of the input methods with uninterpreted

functions are equivalent, ARDiff outputs EQ and the process ter-

minates. In this case, the soundness of the abstraction guarantees

that the concrete methods are also equivalent (see Section 4.3).

Otherwise, the result is either NEQ or UNK. IfΦ contains uninter-

preted functions, the UNK result might be an artifact of abstraction

and using a subset of original statements with concrete values might

result in simpler summaries. For the NEQ case, a satisfying assign-

ment making the summaries non-equivalent might assign values

to uninterpreted functions even though code abstracted by these

functions can never produce such values [27]. For the example in

Figure 3a, Φ is satisfiable (NEQ result), even though methodsm and

m′ are, in fact, equivalent. Such results occurs because assigning a

value other than 200 to UF 2
acc () will make the formulasM andM ′

different.

In most cases, refining abstractions that lead to NEQ or UNK

results can help eliminate false-negatives and unresolved instances.

ARDiff then checks whether refining Φ is effective (step 4 in Fig-

ure 2). For the UNK case, this simply translates into checking

whether Φ still contains uninterpreted functions. For the NEQ case,

the tool checks whether ¬Φ is satisfiable, that is, whether there

exists at least one assignment that makes M and M ′ equivalent.

If so, ARDiff proceeds to the refinement step. Otherwise, further

refinement is either impossible or ineffective; the tool then returns

the corresponding result to the user and the process terminates.

This refinement step (step 5 in Figure 2) is at the core of our

approach: it accepts as input the formula Φ and, by applying a

set of heuristics, outputs a statement s in methodsm andm′ that

is skipped from being abstracted away. ARDiff then proceeds to

creating a finer-grained abstraction (next iteration of step 1 in

Figure 2), aiming at producing symbolic summaries where only

the code that is required to establish equivalence appears in the

summaries in its refined form.

4.2 The Refinement Process

To identify the best refinement candidate in each iteration, we

utilize a set of heuristics, described in Algorithm 1. The main goal

of these heuristics is to find the most łcriticalž yet simple code

statements that can help establishing equivalence/non-equivalence

without introducing unnecessary complexity into the equivalence

assertion. Our heuristics work on two levels: symbolic summaries

(Heuristic 1 and 2) and the code itself (Heuristic 3). The goal of

summary-level Heuristics 1 and 2 is to narrow down the selection
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(

(N ≤ 0 ∧ Ret = UF 7r es (N ,A)) ∨ (N > 0 ∧A = 0 ∧ Ret = UF 5twoarд(A) ∗UF 4
bess
(N )) ∨

(N > 0 ∧A , 0 ∧ Ret = UF 15r es (UF 3r es (),UF 14
bess
(UF 2acc (),UF 5twoarд(A),N ),N )/(200 +UF 14

bess
(UF 2acc (),UF 5twoarд(A),N )))

)

⇔
(

(N ≤ 0 ∧ Ret = UF 7r es (N ,A)) ∨ (N > 0 ∧A = 0 ∧ Ret = UF 5twoarд(A)) ∨

(N > 0 ∧A , 0 ∧ Ret = UF 15r es (UF 3r es (),UF 14
bess
(UF 2acc (),UF 5twoarд(A),N ),N )/(UF

2
acc () +UF 14

bess
(UF 2acc (),UF 5twoarд(A),N )))

)

(a) Refinement Iteration #1.

(

(N ≤ 0 ∧ Ret = UF 7r es (N ,A)) ∨ (N > 0 ∧A = 0 ∧ Ret = UF 5twoarд(A) ∗UF
4

bess
(N )) ∨

(N > 0 ∧A , 0 ∧ Ret = UF 15r es (UF 3r es (),UF 14
bess
(200,UF 5twoarд(A),N ),N )/(200 +UF 14

bess
(200,UF 5twoarд(A),N )))

)

⇔
(

(N ≤ 0 ∧ Ret = UF 7r es (N ,A)) ∨ (N > 0 ∧A = 0 ∧ Ret = UF 5twoarд(A)) ∨

(N > 0 ∧A , 0 ∧ Ret = UF 15r es (UF 3r es (),UF 14
bess
(200,UF 5twoarд(A),N ),N )/(200 +UF 14

bess
(200,UF 5twoarд(A),N )))

)

(b) Refinement Iteration #2.

Figure 3: The Equivalence Assertions Φ = ¬(M ⇔ M ′) for Methodsm andm′ in Figure 1.

Algorithm 1: The Refine Procedure

1 Input :Equivalence assertion Φ = ¬(M ⇔ M ′)

Output : statement s to skip

2 begin

3 U ← Un(Φ); ▷ Consider all uninterpreted functions in Φ

4 Uc ← ∅ ▷ Refinement candidates

5 foreach u ∈ U do

▷ Heuristic 1: Is there a value of u that make the summaries equivalent

for any values of the remaining functions?

6 if SMT [∃u |∀ui ∈U \{u}, M ⇔ M ′] = ‘SAT‘ then

7 Uc ← Uc ∪ {u }; ▷ Add u to the set of candidates

▷ Heuristic 2: Is u used differently by M and M ′?

8 if Count(u ,M ) , Count(u ,M ′) then

9 Uc ← Uc ∪ {u }; ▷ Add u to the set of candidates

10 if Uc = ∅ then

11 Uc ← U ; ▷ Cannot narrow down selection; consider all functions

▷ Heuristic 3: Rank all statements (lower is better)

12 S ←
⋃

u∈Uc

Statements(u); ▷ All statements from all functions in Uc

13 R ← ∅; ▷ Ranked statements

14 foreach s ∈ S do

▷ Heuristic 3.1: The depth of s in loop nesting

15 r1 ← LoopNestingIndex(s );

▷ Heuristic 3.2: The total number of non-linear arithmetic operators in s

16 r2 ← NonLinearOperators(s );

17 r ← r1 + r2; ▷ Total rank

18 R ← R ∪ {[s, r ]}; ▷ Add s with rank r to candidate set

19 return smallestRank(R); ▷ Return a statement with the smallest rank

only to statements truly necessary to prove/disprove equivalence;

these heuristics do not directly reason about the structure of the

code. Then, code-aware Heuristic 3 selects the next refinement

candidate based on code simplicity.

We start the description from the summary-level heuristics,

which consider all uninterpreted functions in Φ as potential re-

finement candidates (line 3) and further rank them to identify the

best refinement candidatesUc (lines 4-11):

Heuristic 1: First, for each uninterpreted functionu ∈ U , we check

whether there exists a value of u that would make the formula Φ

hold, regardless of the values of other functions. The rationale

behind this heuristic is that if such value exists and refinement

will prove that it can hold, no other functions need to be refined,

eliminating the need to introduce unnecessary complexity. For

example, given three uninterpreted functions u1, u2, and u3, and

Φ = ¬((u1 ∗ u2 ∗ u3) ⇔ ((u1 + u2) ∗ u3)), setting u3 to 0 can make

these two summaries equivalent. Refining this function can help to

prove the equivalence of the summaries without further refining

u1 and u2.

To check if such a value exists, for each u ∈ U , we build the

formula [∃u · ∀ui ∈U \{u } · M ⇔ M ′] and check if it is satisfiable

by passing it to an SMT solver. If the answer is yes, we add the

function to the list of candidatesUc (lines 6-7).

Heuristic 2: Our second summary-level heuristic is based on the

intuition that functions that are used differently inM andM ′ are

better candidates for refinement because they aremore likely to lead

to nonequivalent summaries. In that case, again, non-equivalence

can be established without refining the remaining functions. For

example, given uninterpreted functions u1 and u2, and Φ = ¬((u1 +

u2) ⇔ (5 + u2)), satisfaction of the formula can be established

by refining u1. If u1 is equal to 5, the summaries are equivalent

regardless of the value of u2.

To follow on this intuition, for each u ∈ U , we count the num-

ber of occurrences in M and M ′. If the number differs, we add

the function to the list of candidates Uc (lines 8-9). For the exam-

ple in Figure 3a, this heuristic will identify functions UF 2
acc () and

UF 4
bess
(norm). The first is selected because acc is used in line 17 of

m′ in Figure 1 but not inm. The second is selected because bess is

used in line 11 ofm in Figure 1 but not inm′.

When no heuristics identifies promising refinement candidates to

add toUc , we setUc to all uninterpreted functions inU (lines 10-11

in Algorithm 1). We then proceed to the next step: analyzing code-

level information for identifying the most promising statement

candidate to skip (lines 12-19).

Heuristic 3: To perform code-level analysis, we extract all state-

ments abstracted by the uninterpreted functions inUc (line 12). In

our example, these are statements in lines 2 and 4 in Figure 1. Then,

for each statement, we calculate two metrics. The first (Heuristic

3.1) returns the depth of the statement in the nested loop structure

(line 15). The rationale behind this metric is that statements that

are not nested in any loops are better candidates for refinement.
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For the example in Figure 1, both statements in lines 2 and 4 have

a nesting index of 0 ś they are not nested inside any loop. In fact,

in this example, only statements in lines 14 and 15 have a nesting

index of 1.

Next (Heuristic 3.2), we calculate the number of non-linear arith-

metic operators, such as multiplication, division, power, and square

root, in a statement (line 16). The rationale is, again, that simpler

statements which do not introduce additional complexity for an

SMT solver are better candidates for refinement [16]. For our exam-

ple in Figure 1, the statement in line 2 has no such operators and

the statement in line 4 has 2: pow and *.

We sum the loop nesting index and the statement complexity

index and consider that to be the score of a statement (lines 17-18 in

Algorithm 1). After all statements are scored, this process returns a

statement with the smallest score (line 19), choosing one at random

if multiple statements with the same score exist. In our example,

the statement in line 2 of Figure 1 has a score of 0 and is returned

by the procedure; it will not be abstracted in the next iteration.

The equivalence checking assertion produced after this refine-

ment is shown in Figure 3b.When given to an SMT solver (ARDiff’s

step 2 in Figure 2), the result is still NEQ. As the formula still con-

tains uninterpreted functions,ARDiff proceeds to the second refine-

ment iteration. In this case, Φ contains 6 uninterpreted functions:

all listed above besides UF 2
acc ().

IfUF 5
twoarд(arд) is assigned a value of 0,Φ is unsatisfiable regard-

less of the value of other functions. Thus, it is picked by Heuristic

1 and added toUc . For Heuristics 2, UF
4
bess
(norm) is selected again,

like in the previous iteration.

The statements abstracted by these uninterpreted functions are

the statements in lines 4 and 5 of Figure 1. The rank of the first one

is 2 and of the second is 1. Thus, Heuristic 3 will pick the statement

in line 5 as the next candidate. To prove equivalence, we need to

show that the value of res in line 11 is the same in both methods.

As predicted by Heuristic 1, that is indeed the case, because the

skipped statement in line 5 shows that twoarg = 2* A and, thus,

under the path condition of N > 0 ∧A = 0, res is 0 in both cases.

After this refinement, the process terminates as the equivalence

of the methods is established, without refining the remaining unin-

terpreted functions. The order of refinement plays a key role here,

as refining the function UF 4
bess
(norm) first would lead to an ‘un-

known’ result. Thus, our heuristics were effective in choosing the

right refinement candidates.

We evaluate each of the proposed heuristics separately, as well

as their combination, comparing our results to that of existing tools,

in Section 5. Next, we show that the results produced by ARDiff

are provably correct.

4.3 Validity of the Results

We denote byMf andM ′
f
the symbolic summaries of methodsm

andm′, respectively, that contain no uninterpreted functions. We

denote byMu andM ′u symbolic summaries of these methods that

might contain uninterpreted functions. When ARDiff terminates

with an EQ result and the equivalence assertion still contains an

uninterpreted function, Φ = ¬(Mu ⇔ M ′u ) is UNSAT. This means

thatMu ⇔ M ′u is valid, i.e., satisfied by every assignment. Accord-

ing to Kroening and Strichman [29], uninterpreted functions only

łweakenž the formula; thusMf ⇔ M ′
f
is also valid and the methods

are equivalent. ARDiff terminates with a NEQ result and uninter-

preted functions in the equivalence assertion only if Mu ⇔ M ′u
is UNSAT. In that case, ¬(Mu ⇔ M ′u ) is valid, which implies that

¬(Mf ⇔ M ′
f
) is valid. That is, there exists no assignment making

Mf andM ′
f
equivalent, i.e., the original methods are not equivalent.

4.4 Implementation

To identify common vs. changed code blocks, we useGumTree [20] ś

a state-of-the-art code differencing tool for languages such as Java,

C, and Python. GumTree identifies inserted, deleted, changed, and

moved code statements, using an Abstract Syntax Tree (AST) struc-

ture [46] rather than a text structure. We consider all the remaining

statements common and, in each refinement iteration, exclude from

this set statements that our algorithm chose to refine.

We group the remaining statements into consecutive blocks and,

for each block, identify subsets of statements that can be abstracted

by uninterpreted functions. As discussed in Section 2, some com-

mon statements cannot be abstracted away, e.g., return statements

or conditionals that control return statements and changed blocks.

For example, common statements in lines 2-10 in Figure 1 corre-

sponds to two łabstractablež common blocks: in lines 2-5 and line 7.

We then use ASM-DefUse [3] ś an extension to the ASM analysis

framework [7], to identify inputs and outputs of common blocks and

abstract each variable defined in the block with an uninterpreted

function.

We use the Java PathFinder symbolic execution framework (JPF-

SE) [37] and the Z3 SMT solver [17] for producing and reasoning

about symbolic summaries. We configure Z3 to use simplify and

aig tactics for compressing Boolean formulas, and qfnra-nlsat and

smt tactics for handling non-linear arithmetic. An up-to-date, fully-

functional implementation of ARDiff is available in our online

appendix [5]; the latest citable release can also be found online [4].

5 EVALUATION

In this section, we discuss our experimental setup and evaluation

results. Our goal is to answer the following research questions:

RQ1. How effective are the heuristics applied by ARDiff?

RQ2. How does the effectiveness of ARDiff compare with that of

existing solutions?

In what follows, we describe our experimental subjects, method-

ology, and findings. We then discuss threats to the validity of our

results. To facilitate reproducibility, our experimental package is

available online [5].

5.1 Subjects

We started by using benchmarks proposed by recent work on

symbolic-execution-based equivalence checking [34, 45], which

we refer to as the ModDiff benchmarks. As these benchmarks are

relatively small (28 cases, 7.4 statements per case on average) and

contain no complex constraints, we also adapted for our evaluation

benchmarks collected by Li et al. [32] from the literature on eval-

uating symbolic and concolic execution methods in the presence

of complex path conditions and non-linear functions [19, 44]. The

methods of those benchmarks are classical numerical computation
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Table 1: Evaluation Benchmarks.

Bench. # M LOC % Non-Linear # Loops % Changed

Min. Max. Mean Exp. Stms

ModDiff 28 4 14 7.4 0 0.9 26

airy 2 5 13 9 0 0 40

bess 17 4 60 21.4 46.4 0.5 10

caldat 2 22 45 33.5 27.4 1.5 9

dart 1 9 9.1 0 22

ell 10 6 79 37.9 34.1 1.5 8

gam 9 7 51 22.5 32.1 1.2 12

pow 1 22 4.8 0 4

ran 8 7 87 34.4 40.7 2.5 5

sine 1 148 7.8 0 0.2

tcas 3 11 19 13.6 0 0 19

tsafe 3 9 32 22.6 33.3 0 6

Total 85 4 148 33.9 31.4 0.89 12

functions used in real-world distributions. We excluded from this

suite methods with less than 3 lines of code, as we cannot effectively

inject changes in these methods.

We further excluded 14 methods that contain string and array

manipulations: even though the relevant decision procedures (ABC

and z3str) are integrated with JPF-SE, its support for strings and

arrays is still incomplete. We thus cannot provide full support for

these constructs at the moment. Yet, supporting strings, arrays, and

other language constructs is orthogonal to the abstraction/refine-

ment idea proposed in this work. In fact, Heuristics 1, 2, and 3.1

(loops) are code-agnostic and will work with any code constructs.

Heuristic 3.2 currently only considers arithmetic operations but

can easily be extended, e.g., to count access to strings/arrays with

a symbolic index as another source of complexity.

The remaining 28 ModDiff benchmarks and 57 benchmarks from

the work of Li et al. are listed in Table 1. The first three columns

of the table show the name of each benchmark, the number of

methods it includes, and the number of lines of code (LOC) in

benchmark’smethods śminimum,maximum, andmean. The fourth

and fifth columns of the table show the fraction of statements with

complex non-linear arithmetic and the number of loops in each

method, averaged across all methods of a particular benchmark. For

example, the bess benchmark used as the baseline for ourmotivating

example in Figure 1 contains 17 methods ranging from 4 to 60 LOC,

with 46.4% of complex statements on average. Overall, considering

methods from all benchmarks together, 58% of the methods (50 out

of 85) contain at least one loop and there are 0.89 loops per method

on average. 52.9% of the methods (45 out of 85) contain at least one

statement with complex non-linear arithmetic and there is 31.4% of

statements with non-linear arithmetic per method on average.

As these benchmarks were not designed for the equivalence

checking problem,we had to create an equivalent and non-equivalent

version of each method. To this end, we systematically injected

changes to each method, using the following protocol: first, we

used a random number generator software to automatically pick

the number of changes to inject in each method: between one and

three. Then, we used the software to select the location for the

change. To produce non-equivalent cases, we relied on a catalog

of changes proposed by Ma and Offutt [33] and picked a type of

change (insertion, deletion, update) and the essence of a change

(arithmetic operation modification or condition modification).

For equivalent cases, we first attempted to use one of the existing

code refactoring techniques: split loops, extract variable, inline vari-

able, consolidate conditional fragments, decompose conditionals,

or replace nested conditional with guard clauses [2, 24]. If none of

these modifications were applicable, we inserted dead code, such as

redundant assignments or unreachable code guarded by conditions

that cannot hold in practice. We balanced the number of complex

and simple non-linear logic expressions in all statements we gen-

erated. The last column of Table 1 shows the fraction of changed

statements in each of the benchmarks, averaged across all methods

of a benchmark.

The benchmarks contributed in this work are substantially larger

and more comprehensive than those used in prior studies on equiv-

alence checking techniques. Our benchmarks, together with a de-

tailed description of the injected changes for each benchmark are

available online [5].

5.2 Methods and Metrics

To answer RQ1, we created three versions of our tool, which dif-

fer by the heuristics they apply in the Refinement step (step 5 in

Figure 2):

(1) ARDiffR selects a statement to preserve at random, skipping

all the heuristics described in Section 4.2.

(2) ARDiffH3
applies only the statement-level heuristic (Heuristic

3), picking the łsimplestž statement to preserve while consider-

ing all uninterpreted functions as refinement candidates.

(3) ARDiff applies summary-level heuristics (Heuristic 1 and 2) to

narrow down the set of candidate uninterpreted functions to

refine and then applies the statement-level heuristic for picking

the statement to refine (Heuristic 3).

For each of the tool versions, we counted the number of cases

where the tool could correctly prove or disprove equivalence, for

equivalent and non-equivalent cases separately. We also counted

the number of iterations it took the tool for producing the right

answer. Finally, we recorded the execution time for each of the

benchmarks.

To answer RQ2, we compared the version of the tool that per-

formed the best in RQ1 to two state-of-the-art method-level equiv-

alence checking techniques: DSE and IMP-S. We excluded from our

evaluation regression-verification-based tools, such as SymDiff [31]

and RVT [26], as these tools can only prove equivalence but cannot

disprove it. We could not compare our technique with Rêve [22] as

this tool cannot handle programs containing doubles, which is the

majority of our benchmarks. Like for RQ1, we counted the number

of correctly solved cases and the execution time of each tool.

We reached out to the authors of DSE and IMP-S, but the im-

plementations of the techniques were not available at the time

of writing. We thus re-implemented the techniques and included

them in our generic equivalence checking framework [5]. We ran

the re-implemented techniques on all examples given in the corre-

sponding papers to ensure correctness. Furthermore, two authors

manually cross-validated the results of all experiments on all tools.

We used the same setup to configure all tools, setting a timeout of

300 seconds for each tool, which included a timeout of 100 seconds

for the Z3 assertion checking step. We ran all our experiments on

an Ubuntu 18.04.4 Virtual Machine (VM), with 4 cores and 16 GB of
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Table 2: Correctly Resolved Cases, With and Without Bounding.

Bench #M
Equivalent Not Equivalent

DSE IMP-S ARDiffR ARDiffH3
ARDiff DSE IMP-S ARDiffR ARDiffH3

ARDiff

ModDiff
16 14 16 16 16 16 - - - - -

12 - - - - - 12 12 12 12 12

airy 2 2 2 2 2 2 2 2 2 2 2

bess 17 6 10+3 10+1 13+1 15+1 4 6 6 7 7

caldat 2 1 1 2 2 2 0 0 1 1 1

dart 1 1 1 1 1 1 1 1 1 1 1

ell 10 2 1 2+1 3 3+1 1 2 1 3 3

gam 9 3 4+2 4 4+1 7 3 3 4 4 4

pow 1 1 1 1 1 1 0 1 1 1 1

ran 8 3 2+3 5+1 7+1 7+1 2 5 3 4 4

sine 1 0 0 0 0 0 0 0 0 0 0

tcas 3 2 3 2 3 3 2 3 2 2 2

tsafe 3 0 2 2 2 3 0 1 1 1 1

Total
73 35 43+8 47+3 54+3 60+3 - - - - -

69 - - - - - 27 36 34 38 38

Table 3: Mean Runtime in Seconds.

Bench #M
Equivalent Not Equivalent

DSE IMP-S ARDiffR ARDiffH3
ARDiff DSE IMP-S ARDiffR ARDiffH3

ARDiff

ModDiff
16 6.46 7.23 7.20 7.16 7.17 - - - - -

12 - - - - - 8.29 8.31 8.44 8.39 8.42

airy 2 2.21 2.68 2.42 2.40 2.39 3.13 3.87 3.19 3.2 3.07

bess 17 20.55 42.54 113.46 60.27 25.04 75.51 77.22 182.81 165.52 148.25

caldat 2 17.37 15.46 34.28 29.28 18.79 150.90 152.09 154.86 154.24 153.74

dart 1 2.69 2.72 2.71 2.69 2.72 1.9 2.75 2.61 2.73 2.81

ell 10 139.58 251.98 223.02 234.82 194.59 155.99 169.91 270.76 230.50 209.57

gam 9 22.84 134.26 148.66 116.32 78.18 81.43 130.35 205.34 205.39 205.13

pow 1 1.92 2.34 1.98 1.99 1.96 2.01 3.07 12.93 11.83 12.97

ran 8 1.7 29.34 78.77 8.95 7.68 151.83 53.07 202.81 168.83 168.68

sine 1 300 300 300 300 300 300 300 300 300 300

tcas 3 2.95 3.92 101.08 5.19 3.86 13.93 28.81 101.89 101.26 102.1

tsafe 3 2.19 104.43 15.89 15.31 11.59 102.34 35.66 205.78 203.26 203.26

Mean
- 31.05 78.79 95.34 67.49 49.93 - - - - -

- - - - - - 80.94 79.99 158.4 144.33 132.86

RAM, which was hosted on an Ubuntu 16.04 server with 64 cores

and 512GB of memory. We enforced the timeout of 300 seconds on

each process by using the Linux ‘timeout’ command and used ‘user

time’ as reported by the Linux ‘time’ command to measure time for

terminating processes. We used the Java śXms option to control

memory allocation.

5.3 Results

Table 2 shows the number of correctly resolved cases for equiva-

lent and non-equivalent methods of each benchmark, separately.

For equivalent cases, we also distinguish between cases that were

resolved without loop bounding and the cases where loop bound-

ing was required. We report our result per benchmark and also

in total for all benchmarks. For example, for the bess benchmark

in line 4 of Table 2, DSE is able to correctly resolve six out of 17

equivalent cases; IMP-S is able to correctly resolve 10 cases without

loop bounding and three more cases with loop bounding. ARDiffR ,

ARDiffH 3, and ARDiff resolve 10, 13, and 15 cases, respectively,

without loop bounding and one more case each with loop bound-

ing. For non-equivalent cases, DSE and IMP-S are able to disprove

equivalence in four and six out of 17 cases, respectively; the three

variants of our tool are able to resolve six, seven, and seven cases.

Table 3 shows the mean execution time, in seconds, averaged over

all cases of each benchmark, for equivalent and non-equivalent

cases separately.

RQ1. Comparing the performance of the three versions of our

tool with each other shows that the combination of all heuris-

tics that ARDiff applies is the most beneficial for resolving both

equivalent and non-equivalent cases: ARDiff is able to resolve 63

equivalent cases, compared with 57 for ARDiffH 3 and only 50 for

ARDiffR . This includes three bounded cases for each tool. Interest-

ingly, for the gam benchmark, while ARDiffH 3 had to bound one

case, ARDiff could avoid selecting the statement s leading to the

loop bounding. That is because it applied Heuristic 2 first, to select

an uninterpreted function that only appeared in the summary of

the changed methodm′. Even though statements of this function

had a higher individual complexity score than s , skipping them

in the abstraction helped prove equivalence without any need to

refine loops, as predicted by the heuristics. ARDiff was able to

resolve two additional cases for this benchmark, both without loop

bounding.

Table 4 shows the total number of cases where performing addi-

tional refinement iterations helped each of the tool version arrive at
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Table 4: Correct Cases with ≥ 1 Iterations.

#M
ARDiffR ARDiffH3

ARDiff

# Cases # Iter. # Cases # Iter. # Cases # Iter.

EQ (73) 15 4.2 22 2.7 28 1.6

NEQ (69) 6 4.4 10 4.2 10 3.3

the correct result (# Cases) as well as the mean number of iterations

per case (# Iter). The number of uninterpreted functions in the final

summary for each case and the time spent in the refinement step

are also available in our online appendix [5].

While ARDiffR has the highest mean number of iterations for

both equivalent and non-equivalent cases, it is able to solve the

smallest number of cases. That is because by making a łwrongž pick,

it arrives at a solution that leads to an ‘unknown’ result and keeps

refining the summary until it times out. ARDiffH 3 makes łsmarterž

choices and is thus able to solve more cases with a lower number of

iterations. The combination of heuristics applied by ARDiff allows

it to reach the best result with the smallest number of iterations.

As a result, ARDiff also outperforms other variants in the mean

execution time, as shown in Table 3.

Answer to RQ1: To summarize, our experiments show that

the refinement heuristics implemented by ARDiff increase its

effectiveness, in terms of the total number of equivalent and

non-equivalent cases the tool can resolve, and its efficiency, in

terms of both the execution time and the number of iterations

per benchmark.

RQ2. We now compare the performance of ARDiff to that of

DSE and IMP-S. Naturally, ArDiff outperforms DSE because it ex-

tends DSE with the abstraction-refinement loop and the refinement

heuristics. As a result, ARDiff solves 28 more equivalent and 10

more non-equivalent cases compared with DSE. However, it is

also slower than DSE because it has to perform more abstraction-

refinement iterations to achieve these results.

When comparingwith IMP-S,ARDiff can solve 63 out of 73 (86%)

equivalent cases vs. 51 cases (69%) for IMP-S. It also had to bound

loop iteration in only 3 vs. 8 cases. All equivalent cases solved by

IMP-S are solved by ARDiff as well. In addition, there are 12 cases

solved by ARDiff and not by IMP-S. That is because IMP-S relies

on static analysis, which over-approximates the set of statements

really required to prove/disprove equivalence. As such, it deems a

complex statement impacted and includes it in the summary, even

though the statement is unnecessary for proving equivalence, as

we showed in Section 3 for our motivating example.

Non-equivalent cases are a harder challenge for any equivalence

checking tool; ARDiff performs comparably and even slightly bet-

ter than IMP-S, solving 38 vs. 36 non-equivalent cases. In five cases,

from bess, caldat, gam, and ell benchmarks, ARDiff could pro-

duce the correct proof when IMP-S resulted in ‘unknowns’, due to

the overapproximations described above. However, there are three

non-equivalent cases solved by IMP-S, which result in ‘unknown’

for ARDiff: in tcas, bess, and ran benchmarks. In all three cases,

IMP-S was more successful because the change only impacted a

very small portion of each method. As such, IMP-S could quickly

prove non-equivalence while ARDiff continued refining numer-

ous uninterpreted functions in these methods until it ran out of

time. Interestingly, increasing the execution time allowed ARDiff

to solve the previously unresolved case in the tcas benchmark as

well. For the other two cases, even though the solver made a correct

non-equivalence decision in one of the iterations,ARDiff conserva-

tively refined uninterpreted functions (see Figure 2) until it obtained

an equivalence assertion which is no longer solvable.

For the runtime, ARDiff outperforms IMP-S in terms of the

execution time for equivalent cases: 49.93 vs. 78.79 seconds per case,

on average. That is because it is able to successfully solve more

cases, eliminating many timeouts. For non-equivalent cases, IMP-

S’s performance is higher. The main portion of performance loss in

our tool occurs in ‘unknown’ cases: while IMP-S makes one attempt

and terminate if the SMT solver produces ‘unknown’, ARDiff will

attempt to refine the assertion and try multiple times. Yet, this

design choice allows ARDiff to solve more cases. Interestingly, for

cases solved by both ARDiff and IMP-S, the performance of the

tools is comparable ś 14.77s and 14.56s on average, respectively.

Answer to RQ2: To summarize, ARDiff substantially outper-

forms existing techniques for equivalent cases and performs

comparably, and even slightly better, for non-equivalent cases.

The increased accuracy comes at the cost of a decrease in ex-

ecution time when compared with DSE and with IMP-S for

non-equivalent cases only. ARDiff outperforms IMP-S in terms

of execution time for equivalent cases.

5.4 Threats to Validity

For external validity, our results may be affected by the selection

of subject methods that we used and may not necessarily general-

ize beyond our subjects. We attempted to mitigate this threat by

using a set of benchmark methods available from related work on

symbolic-execution-based equivalence checking and by extending

this set to include additional benchmarks for evaluating symbolic

execution methods in the presence of complex conditions, such as

loops and non-linear arithmetic functions. As we used a set of dif-

ferent benchmarks of considerable size and complexity, we believe

our results are reliable.

As we had to inject changes when generating equivalent and non-

equivalent versions for each of these new benchmarks, the changes

may not reflect real cases of software evolution. We mitigated this

threat by basing our changes on existing refactoring techniques.

We mitigated possible investigator bias of creating these cases by

applying the changes in a systematic way that considered a broad

range of change types and a random number generator software to

pick the change type and location.

Finally, we had to re-implement the baseline tools, DSE and IMP-

S. To ensure the correctness of our implementation, we run the re-

implemented techniques on all examples given in the corresponding

papers. Furthermore, as the implementation of ARDiff relies on

the same underlying framework and setup, we do not believe that

hinders the validity of our findings.

For internal validity, deficiencies of the underlying tools our

approach uses, such as the symbolic execution engine and SMT

solver, might affect the accuracy of the results. We controlled for

this threat by manually analyzing the cases that we considered and

confirming their correctness.
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6 DISCUSSION AND RELATED WORK

Our discussion of related work focuses on techniques that use sym-

bolic execution for equivalence checking and software equivalence

checking techniques that are based on other, related, approaches.

Symbolic execution. DSE [38] and IMP-S [6] are the closest to

our work. They are extensively discussed in Section 1 and com-

pared with our tool. In a nutshell, our work extends DSE with an

abstraction-refinement loop and a set of heuristics for selecting pre-

ferred refinement candidates. Our work is orthogonal to IMP-S as

our proposed heuristics focus on selecting the best refinement candi-

date based on the structure of the symbolic summaries and structure

of the code. In fact, a fruitful direction of possible future work could

be applying our proposed heuristics over IMP-S, which could result

in a solution that better handles the non-equivalent cases. We also

intend to explore broader solutions for non-equivalent cases as a

part of the future work.

ModDiff [45] is a modular and demand-driven analysis which

performs a bottom-up summarization of methods common between

versions and only refines the paths of the methods that are needed

to prove equivalence. CLEVER [34] formulates the notion of client-

specific equivalence checking and develops an automated technique

optimized for checking the equivalence of downstream components

by leveraging the fact that their calling context is unchanged. As

such, CLEVER only explores paths that are relevant within the

client context. Both these techniques scale the analysis to work on

the inter-method level and only consider full-path pruning at the

individual method level. Our work is thus orthogonal and comple-

mentary to these approaches; combining the approaches could be

explored in future work.

Model checking and theorem proving. SymDiff [31] checks the

equivalence of two methods given their behavioral specification

provided by the user. RVT [26] proves partial equivalence of two

related programs, showing that they produce the same outputs for

all inputs on which they terminate, according to a set of proof rules.

Recursive calls are first abstracted as uninterpreted functions, and

then the proof rules for non-recursive functions are applied in a

bottom-up fashion. Our technique does not rely on any user-defined

rule. Also, while these approaches can only prove the equivalence,

our technique can formally prove non-equivalence.

Relational verification approaches, e.g., [12, 22, 35, 39, 43], focus

on verifying properties about two programs or two runs of the same

program, including program equivalence. These approaches mostly

focus on loopy and/or recursive programs; they aim to align pro-

grams and/or their execution traces to a so-called product program

and then identify invariants at the alignment points, effectively

transforming a verification problem into an invariant synthesis

task. Our work is orthogonal to these approach as it does not need

to discover invariants but rather assumes that the two compared

versions are closely related, allowing for better scalability of our

tool. Yet, combining and comparing our technique with these ap-

proaches could be an interesting topic of possible future work.

Incremental verification. This line of work aims to reuse results

from prior verification as programs evolve, assuming that properties

of a client to be verified are given. For example, Sery et al. [42] uses

a lazy approach, implemented in a tool named eVolCheck, which ex-

tracts the property-directed summaries of all function calls (i.e., that

capture only the relevant information needed to verify the asser-

tion), and then locally validates the old summaries w.r.t. the updated

version of the program, thus effectively avoiding the need to re-

verify the updated code whenever possible. Chaki et al. [11] use

state machine abstractions to analyze whether every behavior that

should be preserved is still available and whether added behaviors

conform to their respectful properties. Fedyukovich et al. [21] offer

an incremental verification technique for checking equivalence w.r.t.

program properties designed specifically for loopy programs. Our

work does not rely on verification results from previous versions

and does not require any user-generated specifications.

Concolic execution. Shadow symbolic execution [10, 36] uses

a combination of concrete and symbolic runs to identify path di-

vergence between subsequent program versions. The goal of this

technique is to generate an input that will make two versions of the

program take a different path. However, it cannot prove or disprove

functional equivalence. UC-KLEE [41] is an equivalence checking

tool for C programs built on top of the symbolic engine KLEE [9].

It automatically synthesizes inputs and verifies that they produce

equivalent outputs on a finite number of paths. Yet, this tool cannot

prove or disprove equivalence in full. While all these techniques

mostly aim at identifying examples to demonstrate differences, the

main focus of our work is on formally proving equivalence.

7 CONCLUSION

In this paper, we proposed an iterative symbolic-execution-based

approach for checking equivalence of two versions of a method. It

leverages the idea that versions share a large portion of common

code, which is not necessarily required to prove equivalence and can

be abstracted away using uninterpreted functions. Such abstraction

helps łhidež complex parts of the code, such as non-linear arithmetic

and unbounded loops, that lead to ‘unknown’ or imprecise results.

The key contribution of our approach lies in identifying the set of

common code statements that can be abstracted away vs. common

code statements that are needed for establishing equivalence. We

developed a set of heuristics that help to distinguish between such

cases and evaluated both the contributions of individual heuristics

and of their composition, comparing our tool with two state-of-the-

art method-level equivalence checking techniques: DSE and IMP-S.

For the evaluation, we used the existing equivalence checking

benchmarks proposed by earlier work and also devised a more

complete set of benchmarks that contains realistic methods with

complex non-linear arithmetic operations borrowed from the field

of scientific computing. The results of our evaluation show that

our tool substantially outperforms existing approaches for prov-

ing equivalence and performs comparably when applied to non-

equivalent cases. The implementation of our approach, the bench-

marks we developed, and our experimental evaluation results are

available online [5].
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